Atheros CSI Tool (OpenWrt)
User Guide

Yaxiong Xie
xieyaxiongfly@gmail.com
Yanbo Zhang

yanbo_zhang@outlook.com

Mo Li

limo@ntu.edu.sg

Wireless And Networked Distributed Sensing (WANDS) system group @ NTU, Singapore

mailto:xieyaxiongfly@gmail.com
mailto:yanbo_zhang@outlook.com
mailto:limo@ntu.edu.sg

1 TABLE OF CONTENTS

2 System ReQUIrEMENTS......ccoiciceeitirtrrre ettt s e s e snesessesseeneesessnesnanns
2.1 LI L (A 1 (=] o OO OSSR SR
2.2 CroSS-COMPIIE SYSTEM......cuiiieeeeeeee ettt se et a e s e s s e st et saesns s eneneseesenens
2.3 LT D = OO
3 Build OpenWrt image and Apply CSI-TOOL........coviereereeecerercs et
3.1 Build the CSl-available version of OpenWrt..........cceereneerrere e
3.2 Cross-Compile the Atheros-CSI-TOoI-UserSpace-APP............cccvirnnerenninieenneessseessssenens

4 CONSEIUCE Wi-Fi CONNECHION. .. ueeeiiiiieiecciieiteieeiieesessereeeessessessssessesssessessssnsesesssssssossanee

2 SYSTEM REQUIREMENTS

2.1 TARGET SYSTEM

To install Atheros-CSI-Tool on top of OpenWrt, it is necessary to check if your device is able to
run OpenWrt distribution, firstly. Here you can find all devices that supported by OpenWrt. In
the meantime, the Wi-Fi NIC of your device should support CSl extraction. According to our tests,
not all Atheros Wi-Fi 802.11n chipsets could support CSI extraction, and we make this list for
your reference.

Before starting to follow this guide, please do make sure that your device meets both needs. In
our test, we installed OpenWrt 15.05.1 on TL-WDR4300, which using Atheros AR9580 as Wi-Fi
NIC.

2.2 CRross-COMPILE SYSTEM

Cross-compile is the act of compiling code for one computer system on a different system. The
system the compiler—which is a program to turn source code into executable code—runs on is
called the host, and the system the new programs run on is called the target.

Currently, the target system is OpenWrt, and the host system the cross-compile implement on
is better to be a Linux system, say Ubuntu. We have successfully made the cross-compile on
Ubuntu 12.04 LTS (64 bits) and Ubuntu 14.04 LTS (64 bits). We haven't tested it on the latest
16.04, but we believe it should also work well on it.

2.3 LINux DRIVER

Atheros-CSI-Tool (OpenWrt) is built on top of ath9k, which is an open source linux kernel driver
supporting Atheros 802.11n PCI/PCI-E chips. Theoretically, this tool is able to support all Atheros
802.11n Wi-Fi chipsets. Our test experience, however, is based on Atheros AR9580 NIC. If you
have tested it on other types of Atheros NICs, please kindly inform us whether it is successful or
let us know the problems that you encounter.

3 BuILD OPENWRT IMAGE AND APPLY CSI-TOOL

3.1 BuiLD THE CSI-AVAILABLE VERSION OF OPENWRT

Before stating to build, we need to install some necessary packages:

$ sudo apt-get update

$ sudo apt-get install sudo apt-get install git python sed wget cvs subversion git-core coreutils \ unzip texi2html
texinfo dochook-utils gawk python-pysqglite2 diffstat help2man make gcc g++\ build-essential g++ desktop-file-
utils chrpath flex libncurses5 libncurses5-dev zliblg-dev \ pkg-config gettext libxml-simple-perl guile-1.8
cmake libssl-dev xsltproc fastjar mercurial \ pngcrush imagemagick tcl binutils bzip2 perl grep diffutils openjdk-

7-jdk zlib1g zlib1g-dbg \ zlib1g-dev zlib-bin zlibc zlib-gst ccache distcc gcc-multilib g++-multilib bin86 libtool

Then, we can start to build the openWRT system. To begin with, you must operate as a normal

user: (NOT ROQT).

First of all, use git to get source.
$ git clone https://github.com/xieyaxiongfly/Atheros_CSI_tool_OpenWRT _src.git

This create a directory "openwrt", which is the OpenWrt build directory. Please note that in
order to avoid the error like “cannot find the file” showing up, you’d better git the source code

to /home/S(username) directory, and we will take this path as default for all later commands.
$ cd ~/Atheros_CSI_tool_OpenWRT _src

To update OpenWrt to the lastest release you have to do the following commands:

$ /scripts/feeds update -a

$./scripts/feeds install -a

The first command will update packages and lists of feeds. The second command will install
packages. In both command it is used the option -a that means to apply the command to all

packages.

Now, you are ready to configure OpenWrt. You should use the pseudo graphical configuration to

choose which components to include in your system.
$ make menuconfig

We use the default setting (with the target system set as Atheros AR7xxx/AR9xxx. Examples are

shown as below.

Target System (Atheros AR/ AR9RMX

subtarget (Generic ——=

Target Profile (Default Profile (all drivers)) ---=
Target Images ---=

Clobal build settings ---=

Advanced configuration options (for developers) ----
Fuild the OpenwWrt Image Builder
Euild the Openwrt SDK

Fackage the OpenWrt-based Toolchain
Image configuration ---»

Base system ---=
Administration --—-»

Eoot Loaders ---=

Development ---=

Extra packages ----

Firmware ---=

Kernel modules ---»

Languages ---»

Libraries ---»

LulT ---=

Mail ---=

Multimedia ---=

Metwork ---»

Sound ---=

Itilities ---»

Xorg -—--->

[(e e U T
el b b bl el

Figure 1 The setting for Menuconfig that Atheros CSI tool employs.

Target System B
Use the arrow keys to navigate this window or press the
hotkey of the 1tem you wish to select followed by the <SPACE
BAR=. Press «7?> for additional information about this

{) ARM Ltd. Realview board (gemu)
) ARMwE multiplatform

AT Mwinner Alx/A20/A3x

Altera SoCFPGA

Atheros AR231x/AR5312
((MONAtheros ARVxoo/ ARDxx

e T L T
e

< Help »

Figure 2 The target system that Atheros CSI tool chooses.

When your configuration is done, the last step is to build the system.
$ make

The first build takes much time. On multicore machine you can use the make's option —j to speed

up the building procedure.

If you want to see what is going on during the building procedure, or you want to see an error

detail, you can use the environment variable V
$ make V=s

When the compilation is over, you will find the system images in the
~/Atheros_CSI_tool OpenWRT _src/bin/ar71xx directory. You can get more information about

building OpenWrt image on this site.

The next mission is to flash the new image to hardware and install OpenWrt. We don't cover details

on this part, refer to this site for detailed guide.

After successfully installation, to guarantee our CSI tool will work smoothly, we need to check

whether the module “ar9003_csi” is called on OpenWrt device with this command,
$ Ismod | grep 'ar9003_csi'

This module “ar9003 csi” is crucial for CSI collection because it helps create CSl-detectable

packets on transmitter, and obtain CSI data on receiver.

If you get the message like this:

root@arduino:~# lsmod | grep 'ar9ee3_csi'

ar9ee3_csi 93288 1 athok_hw

Congratulations! Now you have got the CSl-available version of OpenWrt.

3.2 CRross-CompiLE THE ATHEROS-CSI-TooL-USERSPACE-APP

Firsly, please clone the Atheros-CSI-Tool-UserSpace-APP source code:
$ git clone https://github.com/xieyaxiongfly/Atheros_CSI_tool OpenWRT _UserSpaceApp_src

The source folder contains three parts:

https://wiki.openwrt.org/doc/howto/build
https://wiki.openwrt.org/doc/howto/generic.flashing

/sendData : We offer this program as a method to transmit the packet between transmitter and receiver.
For successfully transmission, you need to declare the WLAN interface, the MAC address of receiver, and

the amount of packets you want to send.

Example
Goal: Send 10 packet to from device A to device B
1) Check the WLAN interface of device A

On device A, use command:

$ iwconfig

Then you can get a message like this:

no wireless extensions.

no wireless extensions.

IEEE 802.11bgn Mode:Master Tx-Power=16 dBm

RTS thr:off Fragment thr:off
Power Management:off

no wireless extensions.

The interface which has wireless extension is the WLAN interface.
Here the WLAN interface is wlanO.

2) Check the MAC address of device B
On device B, use command:
$ ifconfig
Link encap:Ethernet HWaddr B4:21:8A:F0@:47:55
inet addr:192.168.240.1 Bcast:192.168.240.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:15778 errors:@ dropped:510 overruns:® frame:@

TX packets:10943 errors:@ dropped:® overruns:® carrier:0
collisions:® txqueuelen:1000
RX bytes:1714313 (1.6 MiB) TX bytes:2138409 (2.0 MiB)

The part labeled with HWaddr is the MAC address of device B. Here
the MAC address is B4:21:8A:F0:47:55.

3) Start the transmission
On device A, cd to /sendData directory, and use this command:
$./sendData wlan0O B4:21:8A:F0:47:55 10

to start the transmission. The number “10” at last is the number
of packets to be sent.

/recvCSl : CSlis calculated by ath9k driver at kernel space. In order to make use of the CSI data, we need to
grab it from kernel space to user space. This program offers an interface to obtain CSlI at user space, as well

as log the data for further analysis.

Example

Goal: Start the CSI receiving program on device B to obtain the 10
packets transmitted from A to B.

On device B, cd to ./recvCSI directory, and use this command:

$./recvCSI CSI obtain

To log the CSI in a file called CSI obtain.

/matlab : The original CSI data we obtain on receiver is expressed in binary, which cannot be analyzed
directly. Therefore, we offer this program to parse the binary data with MATLAB. In this way, we can collect
many useful information about the transmission, such as the bandwidth and rate of the transmission, the

number of antennas on transceiver, etc.

Example
Goal: Parsing the binary CSI data with MATLAB.

1) Transfer the log file CSI obtain from OpenWrt embedded device to
the ordinary computer.

cd to the /matlab directory on your computer and use this
command:

$ scp root@192.168.1.101:/root/CSI obtain

scp is a useful command that help us transfer files between
computer and embedded device. The ip address is the one my
OpenWrt device belongs to. The “/root/CSI obtain” tells the path
to the file “CSI obtain” on my OpenWrt device. Don’t forget the
“.” at last.

2) Start MATLAB and call the “read log file” function to parse the
binary data logged in CSI obtain.

Using MATLAB command:

>> read log file(‘./CSI obtain’)

After calling the function “read_log file” on MATLAB, it will figure out a cell array containing diverse

information on each packet looking like this:

mailto:root@192.168.1.101:/root/CSI_obtain

Field « value
timestamp 2.6616e+09

HH csi_len 420

H channel 2462

H err_info 0

HH noise_floor 0

- Rate 132

-H bandwidth 0

EEI num_tones 55

EEI nr 3

EEI nc 1

EE| rssi 30

Eﬂ rssil 27

EE| rssiz 10

EE| rssis 27

H payload_len 1040
Csi Ix1x56 complex...

H payload 1040x1 wints

In our program, we use abbreviations to represent different information. To check out the physical meaning

of the abbreviations, please refer to our last release of Atheros-CSI-Tool User Guide.

However, before we can make use of the two program “/recvCSI” and “/sendData” on transceiver, we need
to firstly cross-compile the source code on host machine, so that we can generate the binary code for
OpenWrt distribution. To begin with, we need to set up the cross compile environment in the host machine

for cross-compile the OpenWRT programs. Please refer to this site for detailed instructions.

For your convenience, we have prepared the Makefile for cross-compile. After setting the cross-compiling
environment, what you need to do is just cd to the directory “/recvCSl” and “/sendData”, and command
with “make”, respectively. But before starting the cross-compile, please make sure that you have
successfully built the OpenWrt image, because we need to use the generated tools and toolchain for cross-

compile.

After the successful cross-compile, you can transfer the two programs to transmitter and receiver with the
command scp. If everything goes smoothly, then you can control the packet transmission between

transceiver with the two programs.

http://pdcc.ntu.edu.sg/wands/Atheros/document/Atheros-CSI-Tool-User-Guide.pdf
https://wiki.openwrt.org/doc/devel/crosscompile

4 CONSTRUCT WI-FI CONNECTION

In order to construct Wi-Fi connection between devices, you can have one device worked on AP

mode (Routed AP/Bridged AP/Dumb AP), and the other one worked on client mode. OpenWrt offers

multiple methods to construct Wi-Fi connection, such as configure via web interface Luci, or configure via

command line tools.

Here we make a brief introduction to different AP modes and the client mode. You can choose whatever

suitable to your condition and visit the OpenWrt Wiki for detailed information about the implement.

* Routed AP: In the default configuration, OpenWrt bridges the wireless network to the LAN of the device.
The advantage of bridging is that broadcast traffic from Wireless to LAN and vice versa works without

further changes.

* Bridged AP: Bridged AP is to extend your existing wired host router to have wireless capabilities. Clients

connecting to OpenWRT will get an IP address from the wired host router.

* Dumb AP/Access Point Only: This AP allows users to connect over wireless or ethernet to the AP and an
existing network. This means the AP is not routing, it provides no DHCP, and no other functions. This setup
is needed when your network already has a router, access control and dhcp in place, and you'd like to use

it.

* Client mode: A router in Client Mode connects to another wireless Access Point (the host router). It uses
its wireless connection as the WAN interface, and shares the internet connection only to the LAN ports. It
is not seen as an access point by laptops or other computers scanning for AP's and does not accept wireless

connections from client devices.

https://wiki.openwrt.org/doc/recipes/routedap
https://wiki.openwrt.org/doc/recipes/bridgedap
https://wiki.openwrt.org/doc/recipes/dumbap
https://wiki.openwrt.org/doc/howto/clientmode

