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Abstract—Current localization schemes on mobile devices are
experiencing great diversity that is mainly shown in two aspects:
the large number of available localization schemes and their
diverse performance. This paper presents UniLoc, a unified
framework that gains improved performance from multiple
localization schemes by exploiting their diversity. UniLoc predicts
the localization error of each scheme online based on an error
model and real-time context. It further combines the results of
all available schemes based on the error prediction results and
an ensemble learning algorithm. The combined result is more
accurate than any individual schemes. With the flexible design
of error modeling and ensemble learning, UniLoc can easily
integrate a new localization scheme. The energy consumption
of UniLoc is low, since its computation, including both error
prediction and ensemble learning, only involves simple linear
calculation. Our experience with extensive experiments tells that
such easy aggregation incurs little overhead in integrating and
training a localization scheme, but gains substantially from
the scheme diversity. UniLoc outperforms individual localization
schemes by 1.6� in a variety of environments, including �89%
new places where we did not train the error models.

I. INTRODUCTION

In the past decade, various localization schemes [1]–[29]

have been developed for mobile devices using different sen-

sors, e.g., GPS, Wi-Fi RSSIs (Received Signal Strength Indica-

tor) [1]–[6], and inertial sensors (i.e., accelerometer, gyroscope

and magnetometer) [7]–[13]. However, as sensor data quality1

changes accoridng to environmental conditions, the perfor-

mance of an individual scheme varies spatiotemporally [7].

To provide more stable performance, some works fuse the

raw data of multiple sensors, e.g., Wi-Fi RSSIs are used to

refine the results of motion-based Pedestrian Dead Reckoning

(PDR) by particle filtering [11]–[13]. With predefined types of

sensors, it is hard for a fixed fusion algorithm to automatically

adapt to all possible environmental conditions. For instance,

in some regions with weak Wi-Fi signals (due to high wireless

interference or sparse deployment of access points), Wi-Fi

RSSIs may not be able to help the default motion-based PDR,

or even make the estimated location depart from the user’s

true location. As a consequence, there does not yet exist a

one-size-fit-all mobile localization system that can cover all

the places in people’s daily life.

In this paper, we propose UniLoc, a unified framework

that exploits the diversity of existing localization schemes to

achieve accurate and robust positioning across variant environ-

ment. Different localization schemes use different sensors and

they may provide complementary information for estimating

the user’s location. UniLoc adopts a novel fusion methodology

that without going into the details of individual schemes,

only processes the final outputs to exploit the complementary

information of all available schemes and provide better result

than any individual schemes. Based on such a design principle,

UniLoc provides three features.

� General. UniLoc is not constrained to any specific localiza-

tion schemes or sensor data. Any localization scheme can

be easily integrated into UniLoc.

� Adaptive. UniLoc can automatically adapt to the spatiotem-

poral variation of sensor data at every location.

� Scalable. UniLoc can be used in new unknown places

without pre-training.

It is challenging to transform such a framework into a prac-

tical system. First, we need an online error prediction method

that can estimate the localization error of any schemes (gen-
eral) at every location (adaptive) and in any places (scalable).

Although some error models have been proposed [28]–[33],

they are dedicated to special localization schemes and do not

consider the real-time context either, but just assign a constant

accuracy level to a scheme in an entire place. Second, it is

hard to integrate the complementary information of multiple

schemes only based on their final outputs without knowing the

details of specific localization algorithms. Moreover, such an

integration should also adapt to real-time context.
We tackle the above challenges from the perspective of

sensor data. All factors (e.g., sensor specifications and envi-

ronmental conditions) that implicitly impact the localization

accuracy take effect by changing the sensor readings. We

find some potential data features for each sensor type. The

relation between localization error and data features is only

determined by specific localization algorithms. We can quan-

tify the deterministic relation by training a regression model.

In such a way, the implicit influence factors are captured

by a set of explicit data features, and the regression model

of one localization scheme is consistent at different places

and scalable to new places without training. The confidence

in each localization scheme’s output can be calculated on-

line according to the real-time sensor data at every location

1In this paper, we refer the quality of sensor data as its capacity in
labeling and distinguishing different locations. It is determined by both sensor
specifications and instant environmental conditions, e.g., Wi-Fi AP (Access
Point) deployment or visible GPS satellites.
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Fig. 1: UniLoc framework.

adaptively. Furthermore, since the data features are quantified

directly by sensor data, we do not require the details of

specific localization algorithms. The outputs of all available

schemes are combined using an ensemble learning algorithm.

Any localization schemes can be easily added into our general
framework. For example, sensor data fusion based localization

schemes, like Travi-Navi [11] and UnLoc [12], can also be

treated as an individual scheme in our framework.

In UniLoc, as depicted in Figure 1, multiple localization
schemes run in parallel. An error model is used to online

estimate the accuracy of each scheme according to the real-

time context. A probabilistic confidence in the output of each

localization scheme is calculated. Both the output and confi-

dence of all available schemes are processed in an ensemble
engine. UniLoc combines the outputs of all schemes using

a locally-weighted Bayesian Model Averaging (BMA) algo-

rithm. Our work differs fundamentally from previous BMA-

based approaches [29] in that we adapt the weight of each

scheme at every location according to the real-time context. In

UniLoc, the optimal weight of each scheme is approached by

the confidence in its result at every location. Such a weighted

averaging can better tolerate the uncertainty in online error

prediction, and the combined result is more accurate than the

output of any individual schemes. In addition, the locally-

weighted BMA-based algorithm offers UniLoc high flexibility.

UniLoc can temporarily exclude one localization scheme by

simply setting its confidence as zero, if it is not available in

some regions, e.g., no Wi-Fi signal.

The computation of UniLoc, including both error mod-

eling and BMA-based averaging, is light-weight, as they

only involve simple linear calculation. To make UniLoc a

general framework that can integrate some energy-consuming

localization schemes, two techniques are adopted, i.e., GPS

downsampling and offloading. First, GPS is turned off when

its error is predicted to be large at some locations. Second,

to avoid some localization schemes consuming much energy

on smartphones, we move their computation to a server.

By intelligently processing some raw sensor data on smart-

phones, the transmitted data and the energy consumed by data

transmissions are both minimized. Even with five schemes

running in parallel, according to our experiments, UniLoc only

increases the energy consumption of the most energy-efficient

scheme (i.e., the motion-based PDR) by 14%.

Our experience shows that instead of studying new local-

ization algorithms, easy aggregation of the end results from

state-of-the-art schemes can already gain substantial extra per-

formance improvement. Such experience indicates stretched

design space considering the enormous availability of existing

localization solutions. We implement a UniLoc framework

that aggregates five existing localization schemes. We evaluate

its performance in a variety of environments. Most of the

experiments, 89%, are conducted in new places where we

did not conduct any experiments to train the error models. The

experiments demonstrate that UniLoc incurs little overhead in

energy consumption and model training, but gains substantial

performance improvement from scheme diversity (i.e., 1.6

error reduction against individual localization schemes).

II. MOTIVATION

To investigate the performance diversity of existing local-

ization schemes, we run five typical localization programs2

independently on a smartphone (Google Nexus 5X) along

with a daily walking path from our laboratory to a restaurant.

The path is 302 meters and composed of different segments,

including indoors (office, basement passageway, semi-open

corridor and car park) and outdoors.

GPS. We use the results reported from the default GPS

module on smartphones.

Wi-Fi RSSI. We adopt RADAR [1] for its simplicity and

effectiveness. We first build an offline fingerprint database

by collecting RSSIs from all audible APs at different lo-

cations. We calculate the Euclidean distances between an

online measured RSSI vector and all offline fingerprints,

and find the location with the shortest RSSI distance.

Cellular RSSI. We use the same fingerprinting algorithm

of RADAR on cellular GSM signals like in [22].

Motion-based PDR. Inertial sensors (i.e., accelerometer,

gyroscope and magnetometer) on smartphones have recently

been exploited for PDR [7], [8]. We implement the system

proposed in [7] which infers the walking model (i.e., step

count, step length and walking orientation) from the readings

of inertial sensors and uses a particle filter to incorporate

the map constraints (e.g., path edges and walls). We also

detect more landmarks (e.g., turns, doors and Wi-Fi signa-

tures) [12] for calibration.

Sensor data fusion. Some recent solutions perform sensor

fusion across Wi-Fi RSSI and motion-based PDR [11], [13].

We adopt the approach in [11] and assign different weights

to the particles of motion-based PDR according to the Wi-Fi

RSSI distances between the online and offline RSSI vectors.

Figure 2 depicts the measured errors of these localization

schemes. At every location, each scheme reports an estimated

location of the user independently. Since we know the user’s

true location, the localization error can be calculated. At

some locations, the Wi-Fi and cellular based schemes provide

identical result, because they use the same fingerprinting

2The parameters of each scheme are set to be the optimal empirically, e.g.,
for the motion and fusion based schemes, 3000 particles are generated and
maintained every step. In this work, we focus on the localization schemes
that are ready to implement on commercial off-the-shelf smartphones. The
schemes using other sensors (e.g., bluetooth [34], camera [23] and sound [25])
are not considered, as they require customized hardware devices, such as
iBeacon transmitters, programmable LEDs or high-end microphones.
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Fig. 2: Localization error of different schemes along a daily path on our campus.At each location, as we know the ground

truth in the experiment, Skyline chooses the best scheme as its result.

algorithm and the same offline fingerprint layout. From the

experiment results, we find the following two observations.

First, none of these schemes can cover the path with stable
performance. Such a conclusion is also partially supported

by some indoor experiments [6]. One reason may be that

the existing schemes do not explicitly handle the variation

of sensor data quality. Even for the fusion-based scheme,

Wi-Fi RSSIs cannot always help reducing the localization

error of the motion-based PDR. At some locations, e.g., �180

m, the low-quality Wi-Fi RSSIs make the estimated location

depart from the user’s true location. The existing fusion-based

schemes [11], [13] process the Wi-Fi RSSI data in the same

way at different locations, but do not consider the quality

variation of Wi-Fi RSSI data.

Second, different localization schemes complement with
each other at different locations. The performance of each

scheme changes spatiotemporally, as the data quality of

different sensors varies, caused by the natures of physical

sensors (e.g., error accumulation of gyroscope) or variation

of environment conditions (e.g., variant Wi-Fi AP density or

interference [35]). It is hard for a single scheme to overcome

the intrinsic limitations of sensor data; however, at each

location, it is possible that at least one localization scheme

is able to provide good performance. For example, among the

total 91 locations of the path, the cellular-based localization

scheme provides the highest accuracy at 14 locations (15.4%

of the total locations), in which 10 locations (11.4% of the

total locations) are in the basement segment, where Wi-Fi and

GPS are not available and the error of the motion-based PDR

scheme increases accumulatively.

Design space. If we can predict the localization error of

each scheme at every location, we may choose the most-

accurate scheme as our result. Figure 2 shows that the perfor-

mance of Skyline is more stable than any individual schemes.

For the Skyline, as we know the true location of the user

in experiments, we can calculate the localization error of each

scheme; however, in reality, it is hard to predict the localization

error online and in turn find the best scheme. Additionally,

we want to further ask a question: can we go beyond the

Skyline? Can we combine the outputs of all schemes such

that the combined result may exceed the Skyline?

III. ERROR MODELING

The experiments in Section II have demonstrated that the

error of one localization scheme is mainly determined by the

online sensor data. For one localization scheme, given a series

of measurements, error modeling is to learn the quantitative

relation between the localization error and corresponding

sensor data. It can be formulated as a regression problem. In

this section, we introduce a general error modeling workflow

and learn the error models of five typical localization schemes.

A. General workflow

We adopt a general 2-step error modeling workflow, which

is applicable for all localization schemes.

Step 1: Data collection. We treat all localization schemes as

black boxes and execute them on smartphones independently.

At every location, we measure some data, including the

estimated locations of all underlying schemes and the data

from all available sensors. As we know the user’s true location,

the localization error of each scheme can be calculated. As

a result, for each scheme, we build a database that records

the localization errors and the corresponding sensor data at

different locations.

According to our experiments, also confirmed by many

previous works [28], most localization schemes has distinct

characteristics in indoor and outdoor environments. To mini-

mize uncertainty in error modeling, we perform the studies in

indoor and outdoor environments separately. In this work, we

treat all the places with roofs (e.g., corridors on the edges of

buildings) as indoor environment, since they have similar error

characteristics. IODetector [36] is used to automatically iden-

tify the indoor and outdoor environments. It is very energy-

efficient, as it only uses some low-power sensors, including

light sensor, magnetism sensor and cellular signals.

Step 2: Regression modeling. This step is to learn a regres-

sion model based on the collected data. We categorize the

existing localization schemes into several classes according

to the sensor data they use. For each data source, we find

some factors that may influence the localization accuracy,

according to the experiences learned from some existing

works on specific localization schemes. Table I summarizes

the potential influence factors of some typical data sources.
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TABLE I: Influence factors of typical localization models.

Models Schemes Influence factors

GPS GPS on smartphones
Number of visible satellites

Geometric positions of visible satellites

Wi-Fi
RADAR [1] Spatial density of fingerprints (β1)

RSSI
Horus [2] RSSI distance deviation (β2)

EZ [4] Number of audible APs

Cellular
Otsason et al. [22]

Spatial density of fingerprints (β1)

RSSI
RSSI distance deviation (β2)

Number of audible cell towers

IMU

Li et al. [7] Distance from the last landmark (β1)

Travi-Navi [11] Width of the corridor (β2)

UnLoc [12] Orientation changing frequency

Constandache et al. [8] Step count error

The set of influence factors is the same for all the schemes

using the same data sources. Different schemes of specific

localization algorithms may have different coefficients for the

same factor. The fusion-based localization schemes have the

influence factors of all involved data sources. We use multiple

linear regression model to learn the coefficients. For one

scheme, assume we have N entities in the training database.

The localization error yi can be calculated as the follows.

yi � β0 � β1x1i � β2x2i � � � � � βpxpi � εi, (1)

where x1i is the first factor of the ith entity, β1 is the

coefficient of the first factor, β0 is the intercept term and εi
is the residual term after regression. One localization scheme

has p influence factors. The residual ε of all entities should

follow a normal distribution with a deviation σε.

B. Error models

We learn the error models for those five localization

schemes implemented in Section II. We adopt the procedure

suggested in [37] to conduct our regression analysis. We

estimate the coefficients and check the model appropriateness

in this section. We conduct experiments in an office of 56�20

m2 and an open space of �1000 m2 on our campus. In each

place, we perform location estimation at 300 locations. Table

II presents the coefficients of error models for four localization

schemes, except GPS.

Checking the model appropriateness. The intercept

term β0 is zero for all schemes, since the localization error is

zero if all coefficients are zero. The results in Table II suggest

that multiple linear regression can approximately capture the

variability in localization error. 1) For every localization

scheme, we find more than two data features that have a pValue

less than 0.05. The pValue evaluates the hypothesis that the

coefficient is equal to zero. Normally, a pValue less than 0.05

indicates that the feature is significant given the other features

in the model. 2) The residuals of all error models follow a

normal distribution with a mean in the vicinity of zero (με)

and a small deviation (σε). 3) The R2 values of the motion and

fusion localization schemes are as high as 85%. It means that

the derived model can explain (approximately larger than 85%

of) the variability in localization error. Although the R2 values

of the Wi-Fi and cellular schemes are low, the experiments in

Section V will show that these error models are sufficient,

because UniLoc does not need the absolute errors of each

localization scheme, but just the relative errors to distinguish

the accuracy of different schemes.

Wi-Fi and Cellular RSSI fingerprinting. Spatial density of

fingerprints (β1) is measured by the average distance between

two fingerprints around the location under consideration. The

localization error is likely to be high if the fingerprint distance

is large. Therefore, the coefficient is a positive number. RSSI

distance deviation (β2) is the deviation of RSSI distances for

the first k location candidates (k=3 in our setting) that have the

lowest RSSI distances. If the deviation is small, the fingerprints

at these locations are more similar, and in turn the estimated

location is more likely to be wrong.

The experiments are done in an indoor office (56�20 m2).

The distance between two fingerprints is 1�3 m. For larger

fingerprint distances (e.g., 5 m, 10 m, and 15 m), we down-

sample the fine-grained fingerprint data. The spatial density is

not uniformly-distributed in a large place, due to the physical

constraints during fingerprint collection. We use the density

around the user’s location as the value of factor β1. During

the training phase, we know the user’s true location. For online

localization, to calculate the value of factor β1, we estimate

the user’s location based on the existing location prediction

methods [24], like Hidden Markov Model (HMM) or Kalman

filter. In our current implementation, we use a second order

HMM, which can provide an acceptable estimation accuracy.

Our experiment results suggest that the number of audible

APs is not a significant factor. When the number of audible

APs is less than 3, it is unlikely for the RSSI fingerprint-

ing scheme to provide a meaningful result; as the number

increases, however, it does not present a strong correlation

with localization accuracy.

Horus [2] handles the temporal variation of Wi-Fi signals

by learning a distribution of RSSIs for every audible AP. How-

ever, it requires hundreds of samples to capture an accurate

distribution at one location. Each path (2.78 km in total) or

each place (e.g., shopping mall and office) in our evaluation

(Section V) requires tens of days to collect fingerprints with

a resolution of 3�3 m2. Like some previous works [6], we

assume that a RSSI fingerprint database is updated by service

providers or crowdsourcing [9], [10]. In our experiments, each

offline fingerprint has one sample from each audible AP. The

online localization is made within half an hour after the offline

fingerprints are collected.

Besides fingerprinting, Wi-Fi RSSI localization can also use

propagation models, e.g., EZ [4] adopts the log-distance path

loss model to estimate the distances between multiple users

and APs. The distances are further processed to infer the users’

location by trilateration. The model-based Wi-Fi localization is

not considered in this work, because it only works for multiple

users and requires a large number of APs, which may not be

practical in some places.
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TABLE II: Error model coefficients for four typical localization schemes, i.e., RADAR [1], the cellular-based localization

scheme [22], the motion-based localization scheme [7] and Travi-Navi [11].

Wi-Fi, Cellular, Motion, Fusion Estimate pValue με σε R2

Indoor
β1 1.27, 2.08, 0.06, 0.06 0, 0, 0, 0

0, 0, -0.23, -0.27 3.46, 4.37, 0.49, 0.81 0.26, 0.42, 0.85, 0.85β2 -0.02, -0.16, 0.04, 0.05 0, 0, 0.01, 0

β3 n/a, n/a, n/a, 0.13 n/a, n/a, n/a, 0

Outdoor
β1 1.01, 2.49, 0.10, 0.10 0, 0, 0, 0

0, 0, -0.07, -0.07 2.57, 15.17, 0.6, 0.6 0.31, 0.53, 0.88, 0.88
β2 -0.12, -0.2, 0.03, 0.03 0, 0.09, 0, 0

Motion-based PDR. The motion-based PDR [7] leverages

the map to impose constraints on the user’s possible locations.

The localization error increases as the distance from the last

landmark (β1) increases, because the step error accumulates.

If a corridor or path is wider (β2), it has looser constraint and

the localization error is likely to be higher.

Orientation changing frequency does not have significant

influence in localization accuracy. The trembling of the user

hand may cause inaccurate orientation inference. However, the

random error of orientation readings is averaged to almost

zero, as 50 orientation readings are made per second and an

average orientation is calculated every 3 s.

Step count error is not a significant factor either. Trembling

may cause some jitters in the accelerometer trace, which result

in errors of step count inference. We add a compensation

mechanism into the localization system [7]. The normal period

of one human walking step is from 0.4 s to 0.7 s. If the time

duration of one step is less than 0.4 s or larger than 0.7 s, the

system will infer a false positive or false negative step, and

delete or add one step in the user’s trajectory. Our experiments

show that such a mechanism can well mitigate the localization

error caused by trembling.

When the phone is put in different positions, like on hand

or in pockets, it infers different orientations of users. Many

existing works [7], [13], [19] handle the measurement offset

caused by different phone positions. They normally target

at imperceptible tracking. We do not consider the impact of

smartphone positions. As a localization system, UniLoc pro-

vides real-time positioning service. It is reasonable to assume

that users hold their phone on hand for updated location result.

Different persons have different gait patterns, like step

frequency and step length. Personalization of step model is

considered in [7]. Dynamic time warping is applied during

the inference of step count from the accelerometer traces,

and the step length are adaptively updated by particle filter.

We test with 6 persons, including both females and males

with different ages (from 20s to 50s). Benefitting from the

personalization of step model [7], the individual difference

does not impact the localization accuracy much.

Fusion-based scheme. It has all influence factors of the

motion-based PDR (β1 and β2). Spatial density of Wi-Fi

RSSI fingerprints (β3) is also significant, since fine-grained

fingerprints have tighter constraints to the particles of motion-

based PDR. RSSI distance deviation becomes insignificant, as

the particles of the motion-based PDR may not be located in

the grids of the first k location candidates of RADAR.

In outdoor environments, the physical distance between two

fingerprints is large (e.g., 10�20 m), as we may not be able to

access some regions (e.g., in the middle of roads or blocked

by buildings). The coarse Wi-Fi RSSI information cannot

refine the motion-based PDR scheme. Therefore, the fusion-

based scheme has the same error model with the motion-based

scheme in the outdoor environments.

GPS. The results provided by the GPS module of current

smartphones include the user’s coordinate, Horizontal Dilution

of Precision (HDOP) and the number of visible satellites.

HDOP measures the confidence of the reported location,

based on the number of visible satellites and their geometric

positions. A reliable location estimation requires that the

number of visible satellites is larger than 4 and HDOP is less

than 6 [28]. Through a series of experiments, we find that the

number of visible satellites is �10.9 and the average HDOP

is �0.9 in the outdoor environment. Moreover, based on our

measured data (400 locations in two urban open spaces), the

GPS error follows a Gaussian distribution with a mean of 13.5

m and a deviation of 9.4 m. Therefore, the intercept β0 is 13.5

and the deviation of residual σε is 9.4 for the GPS error model.

Impact of device heterogeneity. Two devices may have

different RSSI measurements from the same wireless signal,

due to hardware heterogeneity. If a person uses a phone that is

not the device used for fingerprinting, the localization accuracy

may be impacted. There are many works handling the problem

of device heterogeneity, like online offset calibration [6], [38].

UniLoc is orthogonal to these algorithms. In our experi-

ments with two smartphones, Google Nexus 5X (Qualcomm

QCA6174 802.11ac Wi-Fi 2x2 MIMO Combo SoC) and LG

G3 (BroadcomBCM4339 5G Wi-Fi combo chip), we also

find an offset between the measured RSSIs. We transfer their

RSSI readings of device A and B by an online-learned offset:

RSSIA � α � RSSIB � δ, where α is close to 1 [38]. We

also conduct many experiments for GPS and the motion-based

localization. The results show that device heterogeneity does

not impact the error modeling in these schemes.

Modelling Overhead. Since the relation between local-

ization error and sensor data is only determined by the

localization algorithm and does not change according to en-

vironment variation, the offline error modeling only needs

to be performed once when one localization scheme is first
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intergraded into UniLoc. The learned error models can be used

in new places without retraining. Moreover, multiple schemes

can be learned at the same time. The data collection of five

localization schemes in two places can be accomplished by

one person within one day. According to the experiments in

a variety of environments (Section V), 300 measurements are

sufficient to learn an acceptable error model that can be used in

new places to provide substantial performance gain in UniLoc.

IV. UNILOC

In this section, we present two versions of UniLoc and the

techniques to reduce the energy consumption.

A. UniLoc1: selecting the ”best” localization scheme

To predict the accuracy of one localization scheme online,

besides the absolute error, we also consider the uncertainty in

the prediction. When a scheme provides a location estimation

at time t, its localization error (yt) can be predicted as

a variable with Gaussian distribution, Yt�N �μt, σε�, where

μt � β0 � β1x1t � β2x2t � � � � � βpxpt and σε is determined

by the residual of the regression model (ε). Each β is an error

model coefficient learnt offline and xt is calculated online by

the real-time sensor data at every location. We estimate the

confidence of one localization scheme (ct) in its results at

time t as the probability that its localization error is less than

a threshold τ .

ct � P �Yt � τ� �
� τ

x�0

1

σε

�
2π

e

�
�

x2

2σ2
ε

�
dx (2)

In our implementation, τ is set adaptively at different loca-

tions, as the average predicted error of all available schemes.

For every location estimation, we choose the scheme with

the highest confidence as our final result. If a scheme is not

available at some locations, it just sets its output to zero and

UniLoc will exclude it in calculation temporarily.

B. UniLoc2: locally-weighted BMA-based localization

Let st be the sensor readings measured at time t, and l be

one location. A place is divided into I locations, corresponding

to l1 to lI . Assume we have N localization schemes integrated

into UniLoc. These schemes are N models, i.e., M1 to MN ,

in BMA. We calculate the joint probability that the user is at

location li as:

P �l � li�st� �
N�

n�1

P �l � li�Mn, st�	P �Mn�st�, (3)

where P �l� li�Mn, st� is the probability estimated by the

Mn localization scheme, and P �Mn�st� can be considered

as the weight (wn,t) of the Mn scheme given the real-time

sensor data st. For a place with I locations, we can estimate

the user’s location at time t as:

Lt �
I�

i�1

li	 P �l � li�st��I
i�1 P �l � li�st�

(4)

There exists an optimal weight for each localization scheme

(w�n,t) that minimizes the distance between the user’s true

location Ltrue
t and the estimated location Lt. An optimal

weight assignment ensures that one model will have a higher

weight, if its estimated result (P �l � li�st) ) is closer to the

true P true�l � li�st� for all possible locations li. Therefore,

we approximate the optimal weight of one localization scheme

(w�n,t) according to its confidence in its result. Among all N
localization schemes, the weight assigned to the scheme Mn

at time t is calculated as:

wn,t � cn,t�N
i�1 ci,t

(5)

We use wn,t to approximate P �Mn�st� in Equation 3. In a

2D space, we estimate the user’s location by calculating her

X and Y coordinates independently with Equation 4.

Discussion. Although BMA is widely used in many appli-

cations [39] and similar weighted combination is used to fuse

the results of multiple Wi-Fi localization algorithms [29], the

proposed locally-weighted BMA localization approach differs

from the previous works in two aspects. 1) Our approach is

locally weighted. Instead of assigning a fixed weight for each

scheme globally in a large place [29], we calculate a unique

weight for each localization scheme at every location. The

spatial environment variation is thus considered. 2) In our

approach, the weight of each scheme is determined by the real-

time sensor data at every location. The temporary environment

variation is also taken into account.

According to our experiments, compared with UniLoc1,

UniLoc2 provides better results. UniLoc1 is a simple solution

based on our online localization error prediction proposed in

Section IV-A. It is mainly used for evaluating the performance

of online localization error prediction.

GPS reports the absolute coordinate (i.e., latitude and lon-

gitude) in the geographic coordinate system. Wi-Fi and the

motion-based PDR use the local map coordinate. To combine

the results of multiple schemes, we convert the result of GPS

to the map coordinate by the public digital map information.

C. Energy consumption

The error modeling of UniLoc is conducted offline; thus,

it does not consume any energy for online localization. Mo-

bile localization systems consume the energy of smartphones

by two operations, i.e., sensor reading and data processing.

UniLoc minimizes the energy consumption of both operations.

Most sensors on smartphones, e.g., Wi-Fi, cellular mod-

ules and inertial sensors, are energy-efficient [36]. The most

energy-consuming sensor is GPS. In UniLoc, GPS is turned

off indoors. In outdoor environments, the error of GPS is

predicted as a constant (i.e., β0, 13.5 m) for all locations based

on the error model learnt in Section III-B. The error model

does not need any input parameters from the GPS sensor;

thus we can predict GPS error without enabling GPS sensor.

At every location, UniLoc compares the GPS error with the

other schemes. If its predicted error is the smallest one, GPS

will be enabled; otherwise, GPS will be disabled.
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The computation of UniLoc, including error modeling and

Bayesian model averaging, is light-weight, since they only

involve simple linear calculation. However, the computational

overhead of the motion and fusion based schemes is high, since

they need to update the statuses of 3000 particles every 0.5 s.

According to our implementation, the updating cannot be

accomplished within 0.5 s on Google Nexus 5. We move the

particle status updating computation to a server. Sensor data

are transmitted to the server via Wi-Fi. If Wi-Fi is not available

in some regions, cellular network is used instead, which is

pervasively available. The computation of individual schemes

and UniLoc is performed on the server.

To avoid data transmissions consuming much time and

energy, the raw sensor data are first processed on smartphones.

For the motion and fusion based schemes, only small-size

intermediate results are transmitted to the server. In our imple-

mentation, the high-frequency raw data (50 Hz) from inertial

sensors are pre-processed on smartphones to infer the user’s

step model. The locally-processed results (including moving

direction and distance between two updates) are represented

by four bytes and transmitted to the server every 0.5 s. GPS

transmits the user’s coordinate (latitude and longitude) to the

server only if the number of visible satellites is larger than 4

and HDOP is less than 6. Wi-Fi and cellular localization

schemes send their online RSSI measurements to the server

for fingerprint matching.

V. EVALUATION

We aggregate the five localization schemes mentioned in

Section II into the UniLoc framework for testing. All the

computation of UniLoc is implemented in C++ running on

a workstation with 16GB memory and Intel Xeon E5-1650 v3

processor of six cores. We conduct extensive experiments to

evaluate the performance of UniLoc in in different environ-

ments, including a campus and urban areas, �44047 m2 in

total. The error models learned in Table II are used. Most of

the testing environments (�89%) are different from the places

where the data were collected for training the error models.

The urban areas include a floor (95�27 m2) of a shopping

mall and an urban open space (�5700 m2). In these two

places, 10 different 30-m trajectories are studied for the motion

and fusion based localization schemes; at the same time, the

other localization schemes is performed every 3 m along the

trajectories. Each place has thus �100 tested locations.

A. Error model validation

Based on the derived error models, we predict the localiza-

tion error of each scheme at one location as:

êi � β1x1 � β2x2 � � � � � βpxp, (6)

where the coefficients (β0, β1, � � � , βp) are the results in

Table II and the value of each factor (x1, x2, � � � , xp) are

calculated by the real-time sensor data. If we have M tuples

of localization error and sensor data to perform validation

(M=200 for each test), the normalized Root-Mean-Square

Error (RMSE) of the predicted localization error is:

TABLE III: Normalized RMSE of the online error prediction

for different localization schemes.

Prediction
Same places New places

accuracy
Same Different Same Different

devices devices devices devices

GPS 0.58 0.60 0.60 0.58

Wi-Fi 0.65 0.84 0.84 1.17

Cellular 0.64 1.06 1.12 1.17

Motion 0.20 0.22 0.28 0.35

Fusion 0.39 0.42 0.44 0.53

Average 0.49 0.63 0.66 0.76

RMSE �

��M
i�1�êi�ei�2

M

ē
, (7)

where ei is the groundtruth of localization error for the ith
measurement, and ē is the average localization error of all

measurements in the test database.

Table III presents the normalized RMSE of the predicted

error for the five localization schemes. On average, the predic-

tion RMSE is less than 49%, if we use the error model derived

by the same device and in the same place. We also collect

the validation data with another smartphone model (LG G3)

and in some new places where the error model is not trained

(shopping mall and another office for the indoor test, and an

urban open space). With the new device in a new place, the

average prediction RMSE increases to 76%. Although the error

models cannot provide perfect prediction of localization error,

the results in Table II are useful in our framework. The error

models learned by our approach can be used in new unknown

places without re-training. Our experiments in Section V-B

will show that even with imperfect error prediction, UniLoc

is able to achieve significant performance gain.

B. Accuracy

We use UniLoc to provide real-time positioning service over

eight paths, which are some daily paths taken by the students

and staffs on our campus, e.g., from an office to a library,

restaurants, bus stations, or an auditorium. Figure 4 illustrates

the eight paths which have a total length of 2.78 km, includ-

ing 0.8-km outdoor segments and 1.98-km indoor segments.

The path studied in Section II is Path 1 in Figure 4. For

Wi-Fi and cellular based schemes, the distance between two

fingerprints is 1�3 m in the indoor environments and 10�20 m

in open spaces respectively.

1) The daily path: We first revisit the daily path studied in

Section II to analyze the gain of UniLoc in details. Figure 3

depicts that UniLoc1 can find the best localization scheme and

UniLoc2 outperforms the Skyline at many locations, especially

in the outdoor environments, where the localization errors

of individual schemes are large. The optimal single-selection

solution, noted as “Skyline”, is assumed to know the true

localization error of each scheme. Given the result of the best

scheme, the other schemes can help moving the combined

result closer to the true location.
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Fig. 3: Localization error of the optimal single-selection solution and UniLoc along the daily path.
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Fig. 4: Eight daily paths on our campus.

Figure 5 shows that the usage of different localization

schemes in UniLoc1 is close to the Skyline. Even with

imperfect online error prediction, UniLoc1 can make the right

selection, as long as the predicted error can distinguish the

accuracy of underlying schemes. In addition, even though

UniLoc1 makes suboptimal decision sometimes, the perfor-

mance of the best two or three schemes are close to each other

in these cases, and the misclassification between them will not

impact the localization accuracy of UniLoc1 much. Along the

path, the usage of the Wi-Fi based scheme is low, because the

fusion-based scheme is selected instead when the Wi-Fi sensor

data quality is high, especially in the indoor environment.

Figure 6 presents the average error of all localization

schemes along the path. Among these schemes, the fusion-

based scheme [7] provides the lowest localization error,

i.e., 4.0 m, and UniLoc1 achieves a better accuracy, i.e., 3.7 m.

By combining the results of all underlying schemes, UniLoc2

achieves an average localization error as low as 2.6 m. It

reduces the localization error of the fusion-based localization

scheme by 1.7� and outperforms the Skyline by 1.2�.

2) Overall performance on eight daily paths: Figure 7

presents the Cumulative Distribution Function (CDF) of the

localization errors for all schemes along the eight investigated

paths. UniLoc1 substantially outperforms all the individual

schemes, including the fusion-based localization scheme. Al-

though UniLoc1 cannot find the best scheme at some locations

due to imperfect online error prediction, UniLoc2 can better

tolerate the uncertainty in online error prediction, and achieve

comparable performance with the Skyline.
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Fig. 7: Localization error on the eight daily paths.

For the 50th percentile value of the localization error, the

fusion-based localization scheme provides the smallest error

among all the schemes. UniLoc1 reduces the error of the

fusion-based scheme by 1.4� and UniLoc2 further improves

the reduction factor up to 1.6�.

The 90th percentile value of the localization error from

RADAR (i.e., 10.6 m) is much smaller than the motion and

fusion based schemes (i.e., 15.3 m), as the latter’s error

increase if no calibration signatures can be found, e.g., the long

straight path of the outdoor segment in Path 1. Even though

the Wi-Fi signatures proposed in [12] are implemented, it is

hard to find sufficient signatures outdoors. By combining the

results from more localization schemes, like GPS and cellular,

UniLoc2 controls the 90th percentile value of the localization

error as low as 5.8 m, which is 1.8� lower than RADAR.

3) Different environments: Figure 8a-8c show the CDF of

the localization errors for all underlying schemes in the shop-

ping mall, the urban open space and our office respectively.

In all three places, compared with the individual schemes,

UniLoc2 provides significant performance gain, i.e., �1.7�

for both the 50th and 90th percentile values of the localiza-
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Fig. 8: Localization error for all underlying schemes and UniLoc in different places or with heterogeneous devices.

tion error, as it can benefit from all underlying localization

schemes. Although the error models are learned in the office

and our campus, UniLoc can provide comparable performance

in the crowded shopping mall and the urban open space.

Comparing the performance among these places, we find

two observations. 1) All these systems have better performance

in office rather than shopping mall, as the office has more

stable wireless signals and narrow corridors with many turns.

The localization accuracy of the cellular-based scheme is low

in the shopping mall, because it is at the basement floor and we

can only receive the signals from two cell towers on average.

2) In the outdoor environment, the localization errors of all

existing schemes are high and unstable, due to low spatial

density of fingerprints or wider paths.

4) Heterogeneous devices: All the above experiments are

conducted with a same smartphone model, Google Nexus 5X.

We further evaluate the performance of UniLoc with hetero-

geneous devices. We conduct online localization experiments

with another phone, LG G3. The setting of UniLoc is not

modified. The error models are still the ones in Table II, which

are learned with the data collected by Google Nexus 5X. For

the Wi-Fi based scheme used in UniLoc, the offline fingerprint

database is also collected with Google Nexus 5X.

Figure 8d shows the localization errors of UniLoc and

RADAR. Benefitting from the online offset calibration, both

UniLoc and RADAR significantly reduce the localization

errors caused by the new device, especially when the error is

large (1.9� for the 90th percentile value of the localization

error). The reduction factor of UniLoc is comparable with

the performance gain of RADAR. It means that UniLoc can

assimilate the gain produced by the device heterogeneity

handling algorithm of individual localization schemes.

C. Energy consumption

We use a Monsoon power monitor to measure the power

consumed on smartphones. As the battery of Google Nexus 5X

cannot be opened to connect with the power monitor, we use

Samsung Galaxy S2 i9100 for power measurement. Changing

the phone model does not alter the relative energy consumption

of UniLoc and the underlying localization schemes.

The power and energy consumption of every localization

system over the daily path 1 are presented in Table IV. Along

with the 302-m path including an outdoor segment of 96 m,

the average energy consumption of the individual localization

schemes (except GPS as it is turned off indoors) is 172.5 J,

TABLE IV: Power and energy consumption of UniLoc and all

localization schemes along the daily path 1.

Schemes Localization (mW) Time (s) Energy (J)

GPS 613.7 128 78.6

Wi-Fi 433.9 403 174.9

Cellular 415.0 403 167.3

Motion 418.2 403 168.6

Fusion 444.2 403 179.0

UniLoc
w/o GPS 444.2 354 157.2

191.2
w/ GPS 691.8 49 33.9

and UniLoc consumes slightly higher energy, i.e., 191.2 J. The

most energy-efficient localization scheme is the motion-based

PDR. Compared with it, UniLoc only increases the energy

consumption by 14%. The data transmissions with Wi-Fi or

cellular network do not increase the energy consumption, as

the transmission time is short.

The current consumption of the fusion-based scheme and

UniLoc is the same. In the experiment, we assume UniLoc

is used in normal cases where cellular is always enabled to

mimic the normal usage of a phone as a user. The extra energy

consumption of UniLoc mainly comes from GPS. UniLoc

successfully minimizes the usage of GPS, i.e., turning off

GPS when its error is expected to be large. In the outdoor

environment, compared with the default GPS scheme, UniLoc

reduce the energy consumption by 2.1�.

D. Response time

Table V shows the decomposed response time for one

location estimation, including computation and data transmis-

sion. The response time mainly includes data transmissions

and the computation on both the smartphone (sensor reading

and pre-processing) and the server (execution of localization

algorithms, error prediction of each localization algorithm and

BMA). Since the algorithms of all underlying localization

schemes are executed on the server in parallel, the computation

time of UniLoc is the time taken by the slowest localization

scheme, i.e., 50.6 ms from the fusion-based scheme.

UniLoc only needs 185.7 ms to estimate the user’s location

once, from the beginning of data sensing to the displaying of

location result on the user’s phone. It can provide real-time

positioning service on smartphones. The computation added

by UniLoc is only 6.1 ms, including 0.1 ms for BMA and

6.0 ms for error prediction. The data transmissions of UniLoc

occupy 73% of the total response time.
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TABLE V: Average response time for one location estimation,

including computation and transmission.

Schemes

Time(ms)

UniLoc Time(ms)Localization Error

Phone Server prediction

GPS 1.1 0 0.1 Upload 72

Wi-Fi 8.5 25 6.0 Computation 50.6

Cellular 8.6 18 6.0 BMA 0.1

Motion 27.5 14 0.1 Download 63

Fusion 27.5 23 0.1 Total 185.7

VI. RELATED WORKS

Model aggregation. BMA has been widely used in many

applications [39], like health data analysis and weather pre-

diction. It has been proven that BMA can better tolerate the

uncertainty in model selection [40]. Locally-weight BMA is

studied in classification [41] and applied in the analysis of

urban traffic speed from multiple data sources [42]. Unlike

the context-based weighting in UniLoc, these works are based

on historical data for weight assignment.

Localization error. CONE estimates the error of one local-

ization scheme by multiple measurements at the same location.

However, it cannot be used if the user is moving continuously.

GPS accuracy is studied according to the measurement con-

ditions [31]. Some works analyze the localization error for

Wi-Fi RSSI fingerprinting. The spatial density and number of

APs are studied in [30]. Multiple regression has been used

to study the impact of signal strength values [33]. The error

Probability Density Function (PDF) is also studied theoreti-

cally [43]. A global error of one region is used to combine

the results of multiple RF-based localization algorithms [29].

The above works only focus on Wi-Fi RSSI fingerprinting, and

do not consider the real-time sensor data. CO-MAP [44], [45]

leverages location information of mobile devices to improve

their multiple access performance.

A-Loc [28] uses the error models of some localization

schemes to select one low-cost scheme that can meet the

accuracy requirement. UniLoc is different from a-Loc in two

aspects. First, the error modeling and prediction in a-Loc are

not scalable. A-Loc estimates a probability that the user is at

one place, and then calculates the localization error of one

scheme based on the pre-measured offline error records at all

possible locations. As a result, it does not consider temporal

variation of environment conditions and cannot be used in new

places where no error record has been collected. Second, a-

Loc only selects one scheme; whereas UniLoc combines the

outputs of multiple schemes to achieve a better result.

Individual localization schemes. As a unified localization

framework, UniLoc is orthogonal to the development of in-

dividual localization schemes. Some works [14]–[16] reduce

the sampling rate of GPS by opportunistically turning on some

low-energy-cost localization schemes (e.g., Wi-Fi or cellular

RSSI fingerprinting) based on users’ routing trajectories.

RADAR [1] is the first Wi-Fi RSSI fingerprinting local-

ization system. Place Lab [3] extends RADAR from offices to

metropolitan scale. Horus [2] handles the temporal variation of

Wi-Fi signals. In some works, e.g., EZ [4] and EZPerfect [5],

the log-distance path loss model is used to estimate user

location based on trilateration. Some recent works, e.g., Ar-

rayTrack [26] and SpotFi [27], exploit PHY layer information,

like CSI, to provide sub-meter localization. They are not

included into UniLoc, as CSI can only be accessed by software

radio or special network interface cards. Otsason et al. [22]

use cellular RSSIs to perform fingerprinting localization. The

cell tower ID sequence is also used to estimate the user’s

position [17], whereas it can only be used along the users’

routing trajectories.

Constandache et al. [8] first exploit the inertial sensors on

smartphones to enable PDR in outdoor environments. Li et

al. [7] develop a practical PDR system for indoor localization.

UnLoc [12] leverages some Wi-Fi and structure signatures as

landmarks for indoor PDR. Zee [9] uses Wi-Fi signatures to

find the start of trajectories for PDR. LiFS [10] only processes

accelerometer data to monitor walk steps, which are further

used to construct indoor radio map. FOLLOWME [18] uses

magnetometer to identify different indoor pathes which are

further used to guide users to the right destinations.

Tsai [19] incorporates ultrasonic time-of-flight into PDR by

Kalman filter. SLAC [13] and Travi-Navi [11] fuse the Wi-Fi

RSSIs and motion-based PDR in particle filters. Travi-Navi

also provides some techniques, like image-assisted navigation

and path recommendation. The distance constraints between

peers are used to adjust Wi-Fi RSSI fingerprinting [20].

Cross-modality training [46] is used for positioning in highly

dynamic industrial settings. MapCraft [47] enables reliable

indoor map matching for indoor localization and tracking.

Geomagnetic field and motion pattern are used for indoor

localization [48]. Camera images and inertial sensors are used

for localization on smart glass [49].

An energy-efficient localization scheme is developed for

wireless sensor networks to monitor patients in a nursing

home [50]. WiFi beacons are leveraged to improve the IEEE

802.15.4 localization system [51]. A range-free localization al-

gorithms [52] is proposed for wireless sensor networks. Based

on radio frequency (RF) detection, device-free localization

systems [53]–[55] are developed for residential monitoring.

VII. CONCLUSION

This paper presents UniLoc, a unified framework that ex-

ploits the diversity of existing localization schemes to provide

accurate positioning service on mobile devices. It features a

general localization error modeling workflow and a locally-

weighted BMA-based localization ensemble algorithm, as well

as a set of energy-saving techniques. Extensive experiments

show that UniLoc significantly outperforms the existing local-

ization schemes in accuracy across variant environment.
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