# Predicting the Impact of Disruptions to Urban Rail Transit Systems 

Xiaoyun Mo, Chu Cao, Mo Li, David Z.W. Wang


## Metro disruption



The causes of disruption vary, from train fault, power failure, to extreme weather, etc.


## Metro disruption



- affected 413,000 commuters on $7 \mathrm{Jul}, 2015$
- affected 123,000 commuters on 14 Oct, 2020

How many stranded commuters can be absorbed by nearby buses?


# The resilience of the public transit system 

## The impact of disruption on commuters

## Predict impact

Given a disrupted metro network,

## Disruption Affecting Multiple Locations


and a pair of affected Origin-Dest (OD) metro stations

## Predict impact

We are to predict:

- What percentage of commuters will stay in the public transit system rather than leave for private transit?
-     - the stay ratio metric
- How long is the average travel delay for commuters staying in the public transit system?
-     - the travel delay metric


## Data

- Disruption time \& locations: official tweets
- Commuters' trajectories in public transit system: transit card records



## Key challenges

- Sample sparsity for supervised learning
- 6 disruptions, hundreds of OD pairs
- Commuters' travel behaviours are too unstable to infer their decisions during disruption


## Main ideas (1)

- Different disruptions hardly coincide in the domain of disruption and OD features.
- But they highly overlap in the domain of interested alternative route features.




## Main ideas (2)

- Recognize regular communters
- stabler departure time and OD
- on behalf of all commuters about their choices during disruptions


## Main ideas (3)

- Generate interested alternative routes (IARs) based on the real choices of regular commuters
- sample sparsity again about IARs for supervised learning
- negative sampling
- Build predictors using IAR features for every impact metric



## Evaluation

- We adopt a leave-one-out scheme to evaluate the impact predictors.
- We evaluate prediction accuracy and model stability of the proposed method.

Q \& A

