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This paper presents Amateur, an augmented reality based vehicle navigation system using commodity smart phones. Amateur

reads the navigation information from a digital map, matches it into live road condition video captured by smart phone, and

directly annotates the navigation instructions on the video stream. The Amateur design entails two major challenges, including

the lane identification and the intersection inference so as to correctly annotate navigation instructions for lane-changing

and intersection-turning. In this paper, we propose a particle filter based design, assisted by inertial motion sensors and

lane markers, to tolerate incomplete and even erroneous detection of road conditions. We further leverage traffic lights as

land markers to estimate the position of each intersection to accurately annotate the navigation instructions. We develop a

prototype system on Android mobile phones and test our system in a total number of more than 300km travel distance on

different taxi cabs in a city. The evaluation results suggest that our system can timely provide correct instructions to navigate

drivers. Our system can identify lanes in 2s with 92.7% accuracy and detect traffic lights with 95.29% accuracy. Overall, the

accuracy of the navigation signs placement is less than 105 pixels on the screen throughout the experiments. The feedback

from 50 taxi drivers indicates that Amateur provides an improved experience compared to traditional navigation systems.
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1 INTRODUCTION

Navigation service on vehicles or cars can be provided by vehicle-mounted navigators or smart phones. They
display vehicle’s instant GPS location and overlay the navigation information onto a digital map to assist the
driving. The major limitation of existing navigation systems is that the navigation information is displayed on
the digital map, while the driver’s focus is on the traffic condition through the front window — the navigation
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information is displayed in an indirect and inconvenient way to the driver. The driver thus has to understand the
navigation instructions presented on the device, and then map them to the front traffic view observed. In many
complicated road conditions, e.g., multiple entrances of nearby intersections in front, drivers may take a wrong
turn due to the misunderstanding of displayed instructions or navigation errors. Concentration on translating the
digital map and navigation instructions to the real world view may also cause potential safety issues, especially
for the unfamiliar road conditions, long-term driving and new drivers.

The major motivation of this paper aims to improve the navigation service. To overcome above limitations, we
propose Amateur, i.e.,Augmented reality (AR) [4] based vehicular navigation system, with the help of nowadays
smart phones. Instead of displaying instructions on a digital map, the smart phone directly displays the front
traffic conditions, where all navigation instructions are annotated as arrows on the live video stream to guide
the driver, e.g., to keep going straight, to change to the right/left lane, to turn right/left at an intersection, etc.
Because the live video display is identical to the driver’s front window view and navigation annotations are
clearly marked on the video, such an augmented reality design minimizes the display-understanding gap for
drivers, and enhances the navigation experience. To precisely place navigation instructions into the live video, the
system, however, needs to continuously track the lane-level and navigation status at a high granularity to ensure
navigation accuracy, e.g., unlikely missing a turn or making a wrong turn, as well as to improve the navigation
reliability with GPS errors. In particular, developing such a system in practice entails the following challenges:

1) Amateur needs to precisely identify the host lane, i.e., the lane vehicle currently stays at. GPS cannot reliably
locate vehicles at a lane level, (e.g., 3 to 4 meters), due to high localization errors especially in urban areas. In the
literature, some existing works have studied the host lane detection problem, but they mainly leverage extra
sensors. For instance, the authors in [5] utilize the extra module to communicate with other vehicles. Jiang et
al. [20] deploy hundreds of sensors on the vehicle to fulfill the design. High-definition map and dead-reckoning
sensors are required to achieve lane-level map matching in [39]. In computer vision, there are also existing efforts
made for the lane detection for the automatic driving. In [1], image processing techniques are used to detect
the lane markers and roads. A comprehensive computer vision based algorithms are summarized in [18]. These
solutions extract the complete lane information from video frames, but they rely on non-trivial deployment
of spinning cameras or camera arrays around the vehicle, and incur high computation overhead which is not
affordable by mobile devices directly.
2) To place navigation instructions for the turn at an intersection, the accurate position of the intersection

needs to be identified in video frames. A straightforward solution is to use GPS locations of the vehicle to estimate
the distance to the intersection, and then translate it to a proper position in the video frame. Such an approach is
not a good choice due to GPS errors. Amateur tries to leverage traffic lights that are normally nearby intersections
as indicators to place navigation instructions. Although some traffic light detection designs exist, they mainly rely
on expensive computer vision techniques, which cannot be afforded by smart phones either, e.g., the design in
[14] applying machine learning algorithms, the approaches in [8] and [27] adopting expensive image processing
techniques for detecting the traffic light’s shape and edge respectively, etc.
We address above issues in designing Amateur. In summary, this paper makes the following contributions.

• We propose Amateur, an augmented reality based vehicle navigation system, which directly displays the
navigation instructions on the live road condition video captured by the smart phone. Compared with
traditional methods that mainly display the navigation information on a digital map, Amateur could provide
a more convenient and user-friendly navigation service.

• We propose effective techniques to address the lane identification and intersection inference challenges.
For the first challenge, our key insight is that identifying which lane the vehicle currently stays on is
sufficient for the Amateur design, so that the original lane detection problem can be simplified to the host
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lane identification problem. For the second challenge, we leverage traffic lights and a pin-hole model to
estimate the position of the intersection for correctly placing the navigation instructions in the video.

• With above designs, Amateur is lightweight enough to smoothly execute on the mobile platforms, and we
implement a prototype on Nexus 5X. We comprehensively evaluate its performance over road segments
totaling over a 300km distance and also conduct a user study on 50 different taxi cabs in a city. The results
demonstrate the efficacy of the Amateur design, which can improve the navigation service from four
important aspects: ease of use, perceived distraction, navigation experience and user-friendliness.

The rest of this paper is organized as follows. We review the related works in Section 2. We detail the Amateur
system design in Section 3 and evaluate its performance in Section 4. Design limitations are discussed in Section 5
before we conclude in Section 6.

2 RELATED WORK

Vehicle navigation. Many commercial navigation softwares have been developed for the smart phones and the
most representative example is the Google Maps [16]. Although many of these products now can support the
“audio message reporting” function, drivers still need to manually understand the navigation information. The
authors in [23] find that the acoustic information is preferred by the driver compared with the text and map.
However, the research in [30] find that the long-time audio messages may significantly distract drivers’ attention,
causing the potential safety issues, especially with long auditory messages [11]. The automobile manufactures
propose their own AI-based navigation, such as TESLA [38], but they have powerful sensors embedded. Many
companies give their conceptual products, like Navion [40], Hudify [19] and Exploride [9], while they do not
have available devices currently.

Augmented reality for vehicle navigation designs. In the literature, Augmented Reality (AR) [4] serves as
a promising technique to advance the vehicle navigation design. AR is a technology that overlays the digital
information on objects or places in the real world for the purpose of enhancing the user experience [2]. The
existing attempts to utilize AR in the vehicle navigation designs have been made in both academia and industry.

The study in [12] is a pioneer work to introduce the visualization technique to the vehicle navigation designs,
in which the authors compare three navigation modes (audio only, audio plus map, and visualization) on a
simulated platform and find that drivers watch less frequently on the navigation screen with the visualization.
The authors in [13] further examine an AR based design on a simulated platform and achieve further improved
user experience. The authors in [21] report a user study also in a simulated environment to compare the driver’s
behaviors in different environments. These prior studies suggest that using AR is a more effective and safer way
to design a navigation system [32]. Following this trend, the authors in [41] build an in-vehicle navigation system
using the AR idea. Vehicular AR is further proposed in [10] using a special camera. However, both of them cannot
provide the lane-level navigation guidance. On the other hand, an LED array is introduced on the windshield of
vehicles to provide affordable AR instructions [29], which again requires dedicated hardware to support. Some
researchers combine the real world video with expensive computer graphical models to provide AR navigation
information [33]. Different from these works, we propose a mobile-affordable AR navigation system, without
installing dedicated hardware on the car, to provide a fine-grained lane-level navigation service.

There are also existing attempts made from the industry. Sygic [35] overlays the navigation information on a
real or virtual environment, without the actual navigation provided. Other products like Navdy try to integrate
incoming calls, messages and navigation together and project those information onto the windshield. Such AR
services can only supplement the navigation design. On May 9 2018, Google started to provide the AR function
for their own map application on the Google I/O [15] event in the latest Android system. The captured scenes by
camera can be used to match the Google Street View so as to localize the user and provide proper navigation
instructions. While with such a design, it still cannot provide the lane-level instructions due to the localization
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error. Meanwhile, if the driver’s Google Street View is not the latest version, the matching error can be large
or even the matching failure occurs. As far as we know, Amateur is not the first work that introduces AR in
the navigation system design but it is the first system realizing this vision on commodity mobile devices by
addressing unsolved design challenges.

Lane identification. Many approaches in the literature are proposed to extract lanes from the video streaming
for automatic driving designs [18], which can be used to avoid the lane weaving or drifting [42], or detect whether
a remote object can potentially collide with the vehicle. As these existing works aim to achieve a complete
lane search, labeling entire lanes on the frame [37] by leveraging the lane edge detection [3] involves excessive
computations [6]. These methods cannot be afforded by the mobile devices. Although the authors in [22] propose
a down-sampling technique to reduce the number of frames to be processed, the computation overhead of image
processing is still beyond the capacity of mobile devices. Different from these existing works above, we focus on
the host lane identification problem in the Amateur design and explicitly address the incomplete and erroneous
input issue, which is not been solved yet.

Traffic light detection. Traffic light detection is a key technique in automatic driving designs, which can be
grouped into three categories [8], namely, color segmentation, shape detection and direct classifier. The former
two types of techniques involve extensive computer vision computations. The study in [27] proposes to identify
the traffic lights by detecting the edge of a circle and also the colors of the lights. Authors in [36] determine
the position of traffic lights in the video by their colors and the central point. The extensive computer vision
computations make these methods not suitable for Amateur. The direct classifier technique, on the other hand,
requires a large volume of training data [24]. The researchers in [14] apply the machine learning algorithm to
detect traffic lights. Such a design is also computationally expensive and requires a training phase. To avoid
both the high computation complexity and training overhead, we observe that traffic lights consist of LED bulbs,
which are powered by alternating current. We thus propose to utilize the flickering feature of LED bulbs to detect
the position of traffic light on the frame, and further leverage the pin-hole model to estimate the position of the
intersection for correctly placing navigation instructions in the video. Although there are also some existing
efforts made to identify visible lights on images, e.g., [25], they strive to the indoor positioning designs, which
requires an off-line processing from servers to achieve a high-precision light location identification.

3 SYSTEM DESIGN

3.1 Design Overview

Fig. 1 illustrates the system architecture of Amateur. Suppose that Alice plans to drive from position A to position
B, using Amateur. After Alice inputs the origin and the destination, Amateur first launches the underlying
navigation services, e.g., Google Maps [17] or OpenStreetMap [28], to obtain detailed lane-level1 navigation
information from A to B. Note that Amateur is not positioned to redesign the entire navigation stack. Instead, it
reuses the existing navigation functions and focuses on automatically matching the navigation information to
the live road condition video to achieve a much augmented user experience.
When Alice’s car is moving, Amateur periodically reads GPS to acquire a rough location of the car for

determining the road segment the car is currently on. According to the navigation plan provided by the underlying
navigation service, Amateur then knows which lane should be taken and how many lanes on current road in
total. On the other hand, Amateur executes the Lane Identification module in Fig. 1 to determine the host lane. If
the host lane differs from the lane suggested by the navigation service, the Instructional Sign Placement module
displays an annotation arrow on the live road condition video to inform drivers changing to the correct lane.

1The lane-level road information is already available for most cities in commercial navigation products, like Google Maps [17]. However, due

to the limited resolution of GPS positioning, drivers cannot directly leverage such detailed information in existing systems throughout the

navigation procedure.
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Fig. 1. System architecture of the Amateur design.

To fulfill above design, video frames first undergo a slicing operation to extract the interested points from each
frame. Amateur then executes peak detection to obtain all lane markers (boundaries) on the road. The observed
lane markers however can be incomplete or mixed with detection errors. The lane detection module further
adopts a particle filter to statistically infer the most likely position of host lane through consecutive observations,
by matching the observed lane marker patterns and accelerometer readings with their expected distribution.
When Alice needs to take a turn at one intersection, Amateur can specify the intersection’s position in the

video stream for displaying the corresponding turning instruction. To this end, the Intersection Inference module
first reads the GPS data. If the car gets close to the intersection, e.g., 50 meters in front, it conducts the frame
subtraction operation to unveil the flicking feature of traffic lights to identify the position of traffic lights in video
frames, based on which the module further applies a pin-hole model to estimate the position of the intersection,
so that the turning instruction arrow can be correctly placed.
With above visualized navigation design, Alice could simply follow the displayed annotations to reach the

destination. In the rest of this section, we detail the design of lane identification and intersection interference
modules in Amateur.

3.2 Lane Identification

To determine the lane markers on the road, we have the following key observation: as lane markers are usually
painted with bright colors, e.g., white and yellow, after we transform the video frames to the gray scale, the pixels
on the lane markers will exhibit large pixel values, i.e., peaks. Fig. 2 illustrates the gray scale values of the pixels
along a straight horizontal line extracted from the frame in Fig. 3(a). After manually checking the ground truth of
the lane marker positions on the frame, we find that each highlighted peak in Fig. 2 indeed corresponds to the
boundaries of all the lanes.

Although we propose a design, in Section 3.2.2, to precisely quantify and extract each individual peak from the
converted gray scale pixel values, the obtained overall peak pattern is not always reliable due to two types of
unavoidable errors:

• False alarm peaks: bright reflections, paintings and objects from the road surface can cause the detection of
additional peaks, not corresponding the lane boundaries.
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Fig. 2. Gray scale values of one row of pixels.

• Missing peaks: certain lane boundaries may also be miss-detected due to light conditions or blocking by
nearby cars.

If we directly use such noisy or erroneous peak patterns, host lane cannot be reliably detected. In Amateur, we
introduce a particle filter based host lane identification design to tackle this issue.

3.2.1 Particle Filter Based Host Lane Identification. The core idea for the host lane identification, i.e., identifying
the lane number of host lane on the road, is to conduct a template matching based on the observed gray scale
value peaks as in Fig. 2.

To facilitate the discussion, we first introduce necessary notations used in the design. Fig. 3(a) depicts the live
video from the smart phone and we convert the pixels from the highlighted narrow stripe to the gray scale values
for the peak detection (detailed in Section 3.2.2). For all the detected peaks from one frame, we find that the two
peaks that are closest to the center line of the video frame are usually from the two markers of the host lane (yet
the lane number is still unknown), denoted as Xmid . This is because smart phone is normally placed close to the
middle of the car. For the example in Fig. 3(a), the host lane is lane-3 (with respect to the left). The two markers
of this lane in Fig. 3(b) indeed enclose the frame’s center line. On the other hand, because drivers need to keep a
distance to the car in front, we find that the two markers of the host lane can reliably be detected.
As a result, we can place an x-axis along the narrow stripe as in Fig. 3(b), where the origin is the center of

these two lane markers, denoted as [0]. In addition, we can treat these two lane markers as a delimiter. The
locations of other peaks detected on the left (and right) hand side of this delimiter, denoted as Xobs , can serve as
an observation to infer the host lane’s location. In Fig. 3(b), Xobs contains two peaks, whose coordinates along
x-axis are -895 and -526 respectively, on the left and other two, 407 and 614, on the right. Viewing Xobs as the
constraints, we can then guess the location of the host lane with the following design.

Particle filter framework. Suppose that the current road segment has 4 lanes with 5 lane markers (obtained
from the underlying digital map) illustrated in Fig. 4(a). The host lane, e.g., surrounded by the middle two lanes
in Xmid , is one of these four. If the host lane’s lane number is one, the expected positions of other three lane
markers or peaks are depicted as X1 in Fig. 4(b), and we call it a template2. Similarly, we can generate different
templates for other three possible cases. In addition to the four templates, we also have a real observation
Xobs = [−895,−526, 407, 614] with one extra peak detected, as shown in Fig. 4(c). We thus want to know which
template in Fig. 4(b) that Xobs matches best.

If each peak in the observation Xobs corresponds to one lane marker, i.e., containing no errors, the matching is
trivial. However, as aforementioned, Xobs may contain the peaks from other bright objects’ reflection, e.g., one

2We adopt a default width, e.g., 316 pixels, between two consecutive peaks in each template. As all templates adopt the same width, even it is

different from the actual width on the current road, it does not affect the matching result.
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(a)

(b)

[-895] [-526] [407] [614]

x

Fig. 3. Illustration of peak detections from video frames.
(a) Selected horizontal pixels at the same position from
one frame. (b) Peak positions along the x-axis. The ticks
inside brackets are the positions of lane markers.

Fig. 4. Illustration of the particle filter design. (a) One road seg-
ment has four lanes with five lane markers. (b) Four templates
by assuming the host lane is at each of these four lanes. (c) Tem-
plate matching based on the observed peak pattern, e.g., Xobs
matches X3 best.

more peak in Xobs in Fig. 4(c). Xobs may also miss “legal” peaks due to the blocking from surrounding cars. To
address this issue, we leverage particle filter which can tolerate observation errors and statistically compute the
possibility for each template. After a series of consecutive observations, the probabilistic belief on the real host
lane could rapidly accumulate and lead to the highest confidence.
By this principle, we design a particle filter based method. Suppose there areM particles, e.g.,M = 100. We

treat each lane on the current road (obtained from the digital map) as a bucket and then throw particles into
these buckets. Initially, the probability or weight into each bucket is identical. Whenever one observation Xobs is
generated from peak detection, we update weightwl for particles into lane (i.e., bucket) l . The update is based on
the similarity between observed vector Xobs and each template. Due to the observation errors, the number of
elements in Xobs may be different from each template. To measure their similarity with variant lengths, we adopt
the dynamic time warping (DTW) technique [34]. Given two discrete sequences of different lengths, e.g., Xobs and
X1, DTW searches for the best alignment between these two sequences by minimizing the mutual distance using
dynamic programming. After the DTW computation for each template, the weight updating can be expressed as:

wl = e−dl /k , (1)

where dl is the DTW distance of Xobs to the l-th lane template and k is a scaling factor. From each video frame i ,

we can calculatew (i)
l

by Eq. (1) and further conduct a weighted average with the previousw (i−1)
l

to tolerate peak
pattern errors from individual observations:

w (i)
l
= α ·w (i)

l
+ (1 − α) ·w (i−1)

l
, (2)
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Fig. 5. Accelerometer readings when the car makes a right turn.

where α is set as 0.5 in our current implementation to balance the contributions from both the current and past
observations for avoiding the sudden parameter changes caused by the observation errors. The weight average

will restart from the scratch after the car makes a turn. After Eq. (2), we further normalize each w (i)
l

so that

their summation equals to 1, i.e.,
∑
l w

(i)
l
= 1. After the weight update, all particles will be redistributed cross all

possible lanes with a new distribution. After several rounds of updating, most particles will converge and we
select the lane occupied by particles whose weight is larger than 0.5 as the host lane.

Enhanced particle filtering. With this primary design, in Amateur, we also propose an enhancing technique
to further improve the host lane identification performance, by detecting and leveraging the event of car’s
lane-changing. Suppose that Amateur detects the car has changed to the right lane. In this case, the left-most
lane on the road is unlikely to be the current host lane, as it contradicts to this lane-changing event. Therefore,
the weights of particles in each bucket, after the awareness of such an event, can be further adapted to speedup
the convergence and improve the reliability.

To leverage such an opportunity, we observe that if the car goes straight, the two markers in Xmid , enclosing
the host lane, are on the different sides of the frame’s center line, as shown in Fig. 3(b). When it starts to turn
right, the right marker starts to move towards the center line. After the car turns to the right lane, this marker
will move cross the center line. The same principle can be applied when the car turns to the left lane. Therefore,
we can utilize such a center line crossing phenomenon to detect the lane-changing event. On the other hand,
when a car changes its lane, it may change s lanes, where s can be greater than 1. For instance, if the car changes
from lane 1 to lane 3, s equals to 2. With different s values, the weights of particles should adapted differently.
However, when the car changes multiple lanes, its heading direction becomes not parallel to the lane’s direction.
We cannot determine the exact value of s based on the center line crossing phenomenon. To this end, we find
that the IMU sensor readings from smart phone can facilitate to determine the value of s .

In Amateur, smart phone is tightly mounted on the car and its IMU sensor readings (along the direction that is
perpendicular to car’s moving direction) suffice to infer the car status, e.g., moving straight or making a turn.
Fig. 5 illustrates such accelerometer readings when the car makes a right turn. It clearly shows a convex bump.
We conduct a moving average for accelerometer readings. Normally, the readings are near zero. However, when
the car turns to a new lane, its readings exhibit an obvious change. The shape of such reading patterns is highly
related to the lane-changing details.
More precisely, given the acceleration readings (perpendicular to car’s moving direction) under the lane-

changing event (detected by the center line crossing phenomenon in the video), i.e., observation O, we aim to
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compute the posterior distribution P(Ls |O), where Ls represents the lane-changing event with s lane(s) being
changed. Therefore, the Bayesian inference can be expressed as:

P(Ls |O) = P(O|Ls ) · P(Ls )/P(O). (3)

The likelihood for the occurrence of the lane-changing event P(Ls ) and the observed sensor readings P(O)
can be estimated from the off-line analysis of the collected live video and sensor data traces. But later we find
that their exact values are not needed in Amateur, and we denote Eq. (3) as P(Ls |O) = P(O|Ls ) · β , where
β = P(Ls )/P(O). To calculate P(O|Ls ), we record different IMU readings under the events Ls as templates in
advance. Those templates can be utilized to match the actual sensor readings during the driving to compute
P(O|Ls ). For this computation, we further apply DTW to measure the similarity between the observed O and

each template, and compute P(O|Ls ) as P(O|Ls ) = e−d
′
s /k ′ , when d ′

s is the DTW distance of O to each template,
and k ′ is a scaling factor. Then we can incorporate P(Ls |O) = β · P(O|Ls ) to update particle filter’s weights in
Eq. (1) when the lane-changing event is detected:

ŵl =
∑

s+i=l

P(Ls |O) ·wi =
∑

s+i=l

β · P(O|Ls ) ·wi , (4)

where P(L0 |O) is defined as 1. The rationale of Eq. (4) is: when s = 0, wi is the original weight wl and only
the peak observations contribute to the weight update in line 9 of Algorithm 1; Otherwise, the term P(Ls |O)
describes the likelihood that the car changes from the i-th lane to the l-th lane by changing s lanes in total, i.e.,
s + i = l . In this case, the peak observations and accelerometer readings of the lane switching both contribute
to the weight update in line 7 of Algorithm 1. In other words, in addition to the original weightwl , Eq. (4) also
considers the transitions from other lanes. After Eq. (4), we further normalize all ŵl , so that their summation
equals to 1, and then apply the normalized ŵl in Eq. (2) to throw particles to identify host lane. Note that the
factor β will be canceled out during normalization and we do not need to know its exact value because given the
same observation, they are equal in different lane-changing events.

A formal description of the weight updating is given in Algorithm 1. In particular, the algorithm maintains a set
of particles and each particle corresponds to a possible host lane. Then, the algorithm considers to associate each
pair of peak observation and accelerometer readings with every particle to calculate how likely (probability) that
each lane could be the host lane (line 7). When there is no lane-switching event, the corresponding probability is
calculated in line 9. After the probability contributed by new peak observations and accelerometer readings is
calculated, the algorithm updates the weight of each particle (line 11) and normalizes their weights (line 15). The
algorithm utilizes DTW function (line 15) to calculate the weight of each particle, which finds the best match
between two time sequences (line 24–29). In DTW , the algorithm usually utilizes the Euclidean distance (line 26)
as the cost function. Finally, the DTW function returns the cost value (Euclidean distance under best match) of
two input time sequences (line 30), which is used in the weight updating in line 7 and 9.

Lane-changing arrow placement. As stated before, after the weight update, all particles will be redistributed
cross all possible lanes with a new distribution. After several rounds of updating, most particles will converge
and we select the lane occupied by particles whose weight is larger than 0.5 as the host lane. After the host lane is
identified, if it differs from the suggested lane by the navigation service, a lane-changing annotation is displayed
in the live road condition video, where the annotation arrow design is introduced in Section 3.3.

3.2.2 Peak Quality Control. Although the particle filter could automatically tolerate observation errors, as a
matter of fact, many peak errors can be excluded before the particle filtering to speedup the host lane identification.

To this end, for any peak pattern as depicted in Fig. 2, peaks are empirically characterized by three features:

• Height h: the gray scale value of a peak.
• Width w: the width of the detected peak.
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ALGORITHM 1: Weight update for particles in the host lane identification

1 Input: peak template Xb , peak observation Xobs , accelerometer template Ls and observation O;

2 Output: updated weights for all the particles;

3 for each template Xb do

4 for each template Ls do

5 for each particle p do

6 if Ls event happens then

7 wl±s = e−DTW [Xb ,Xobs ]/k−DTW (Ls ,O)/k ′ ; // Both peak patterns and accelerometer readings

contribute to the weights of the particles

8 else

9 wl = e−DTW [Xb ,Xobs ]/k ; // Only peak patterns contribute to the weights of the particles

10 end

11 Update the weight of particle p following equation 2 ; // Updating of the weights

12 end

13 end

14 end

15 Normalize the weights of all particles ; // Normalization of the weights

16 Function DTW(T , O):
17 for i = 1 to lenth(T ) do
18 DTW [i, 0] = ∞ ; // Initialization

19 end

20 for j = 1 to lenth(O) do
21 DTW [0, j] = ∞ ; // Initialization

22 end

23 DTW [0, 0] = 0;

24 for i = 1 to lenth(T ) do
25 for j = 1 to lenth(O) do
26 cost = d(T [i],O[j]) ; // The cost is measured by the Euclidean distance

27 DTW [i, j] = cost +min{DTW [i − 1, j],DTW [i, j − 1],DTW [i − 1, j − 1]} ; // DTW calculation

28 end

29 end

30 return DTW [lenдth(T ), lenдth(O)] ; // Return the final DTW value

31 End Function

• Prominence p: the prominence of a peak within rangew .

Suppose the width (pixel-wise) of one frame is N . Along a row extracted from one frame, the gray scale values of
the N pixels are denoted as G = {дi }Ni=1. Through our extensive investigations, we find the following empirical
criteria could well characterize the peaks corresponding to lane markers:

h ≥
1

2
·max{дi }Ni=1, (5)

p = h −min{дi }
дk+w2
i=дk−w

2

, (6)

1

3
· p ≤ p −G10th . (7)
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Fig. 6. Cropped parts of six continuous frames containing the traffic light from live video.

where G10th is the 10th percentile in set {дi }
дk+w2
i=дk−w

2

and дk is the position of the k-th peak. Eq. (5) ensures the

detected peaks should be bright enough. Eq. (6) and (7) ensure that the detected peak should be sharp enough.
The three features, e.g., h,w and p, are carefully investigated in Section 4.

Due to the perspective effect, these parameter settings may vary if the straight horizontal line in Fig. 3(a) is
selected differently. To collect consistent observations, we adopt a fixed offset in Amateur, e.g., 230 pixels to
the frame bottom on our current development platform Nexus 5X. The 230 pixels on Nexus 5X correspond to a
horizontal line about 5 meters in front of the car. This distance is rarely blocked by the front car, as the driver
needs to keep certain distance to the front car during the driving. Therefore, the pixels from this position could
provide a reliable lane marker detection on our current implementation platform. In Section 5, we further discuss
how to set this parameter on different smart phones. On the other hand, as the pixels adopted to detect lane
markers correspond to a horizontal line that is not far away from the car, when a car moves along a curvy road,
the observed bending of all the lanes is also similar to each other. As a result, after we use DTW to find the
similarity between the observed peak pattern and the peak templates, the curve lanes have the same impact on
each template. The calculated similarity can still update the weights of the participle filter as on a straight road.

3.3 Intersection Inference

With the host lane identification design in Section 3.2, the lane switching annotation arrow can be displayed in
the live road condition video. To further display an annotation arrow for the intersection turning, the position of
the intersection needs to be specified in the video frames and we leverage traffic lights as an anchor to estimate
this position for the arrow placement in this section.

3.3.1 Traffic Lights Detection. To determine the position of traffic lights, we utilize the flickering feature of
LED bulbs. As traffic lights are powered by alternating current with a time varying intensity, i.e., of 50 or
60 Hz frequency, the light intensity varies accordingly, as shown in Fig. 6. Such a difference can be unveiled
by subtracting consecutive frames. According to GPS, Amateur can detect whether the car gets close to an
intersection, e.g., 50 meters in front. If so, the intersection inference module conducts the frame subtraction to
unveil the flicking feature of traffic lights to identify the position of traffic lights in video frames, based on which
the module further applies a pin-hole model (Section 3.3.2) to estimate the position of the intersection, so that the
turning instruction arrow can be correctly placed.

Fig. 7 illustrates the flow chart of the traffic lights detection. Frames are streamed into a subtracter. It outputs
the subtracted results of two consecutive video frames. As the camera captures the real-time video with 30
frames per second (FPS) and the frequency of the traffic light’s intensity varying is 50 or 60 Hz, the area with
significantly changed pixel values likely indicates traffic lights due to the flickering feature of LED bulbs, while
other areas will not exhibit such a high intensity varying frequency because they reflect the sun light, which can
be viewed as a constant approximately within a short time span. Fig. 8 shows that the statistic difference of pixels
representing traffic lights varies from 31 to 189 in the gray scale domain. In particular, 70% of the pixels at traffic
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Fig. 7. The flowchart of traffic lights detection for the intersection
inference in live video.
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lights’ position is larger than 60 in the gray scale domain. On the contrary, the pixel changing in the gray scale
domain for other areas is rarely larger than 50. Therefore, we use the threshold 50 to binarize the subtraction
result in our current implementation.
After the binarization, the preserved area in the frame mainly indicates the traffic lights. We then apply the

color filter [24] to extract the positions of pixels representing the traffic lights and use their averaged position to
denote the traffic light. After the identification, the y coordinate of the traffic light, i.e., its height, is passed to the
pin-hole model, as illustrated in in Fig. 9.

3.3.2 Pin-hole Model. In Amateur, we utilize the position of traffic light y in the frame to infer the position
of the intersection. We observe that the supporting point of a traffic light, e.g., point A in Fig. 9, could serve
as a good reference to indicate the nearby intersection because it approximately shares a similar depth as the
intersection to the car in the video frame.

Fig. 9. Pin-hole model to calculate the position of an intersection in a video frame.

Therefore, we introduce a pin-hole model as shown in Fig. 9 to fulfill the calculation. We first determine the
position of the traffic light in the frame in Section 3.3.1 and denote this position as it , i.e., it = y in Fig. 9. When
there are multiple traffic lights are detected, Amateur selects the one with the largest y value (i.e., the highest
one on the screen) as the indicator. This is because when a car is approaching a crossroad, the traffic light that
the driver needs to follow is in front of the car (maybe far away but the direction is almost upright). Therefore,
according to the perspective relation, such traffic light has the highest y value on the screen. On the other hand,
the physical height of traffic light is normally fixed in a city, which can be denoted as H . After the smart phone is
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(a) (b) (c) (d)

Fig. 10. Instructional annotation arrows designed in Amateur. (a) Left-lane changing. (b) Left turning. (c) Right turning. (d)
Right-lane changing.

mounted to the car, we can also measure its distance to the ground h. With these three parameters, the position
of the supporting point, denoted as ia , in the video frame can be calculated by:

ia =
h

H − h
∗ it . (8)

After ia is obtained, the upper edge of the annotation arrow is aligned with this height to indicate a turning at
the intersection.

Annotation arrow design and display. The primary arrow set to navigate the driving consists of four basic
elements. The first two are turning left or right, as shown in Fig. 10(b,c), which inform the driver to turn left or
right at the crossroad. The other two arrows are left- or right-lane changing, as Fig. 10(a,d) depicts. These two
arrows inform the driver how to change the lane, where the lane changing number also appears on the top of
the arrow to facilitate the driver to recognize. We show concrete use cases of these annotation arrows in the
evaluation Section 4. One more arrow might be included in Amateur, i.e., going straight. Because if there is no
turning or lane-changing event, the default operation is going straight. Therefore, we skip this arrow to reduce
the amount of arrows displayed that may distract the driver’s attention.
To display the annotation arrows, in addition to the smart phone’s screen, another possibility is to project

them on the dashboard or windshield of the car. However, this may require the car release the permission to let
third-party navigation system access its dashboard, which needs the car manufacture’s cooperation and may also
have security risk concerns. In addition, displaying information on the dashboard or windshield requires the
transparent windshield to support as well, which is more expensive. Therefore, we provide a lightweight and
easy-to-deploy solution which is transferable regardless of car models and windshield types by using the smart
phone, due to its independence to car’s internal system and the wide availability to most drivers.

4 IMPLEMENTATION AND EVALUATION

4.1 Experiment Methodology

We implement Amateur using the Nexus 5X smart phone, which is equipped with the IMU sensors, two cameras
and a 1920 ∗ 1080 resolution screen. It has a 1.8 GHz hexa core 64-bit ARMv8-A processor and 2GB RAM. In the
implementation, we invoke the OpenCV library for the image processing. The sampling rate of GPS is set to be
1hz during this experiment.

To evaluate the performance, we hire taxi cabs in a city and attach the mobile phone to the windshield with a
mobile phone holder. The phone is plugged with the USB power and there is thus no energy concern to the usage
of Amateur. Prior to the experiment on each taxi, we measure the distance (one time effort for each taxi) from the
phone holder to the ground, i.e., h in the Eq. (8) used by the pin-hole model. The evaluation lasts several weeks
and covers 5 experimental routes (depicted in Fig. 11) cross the city, with the total length of over 96 km, where
the connected markers are the expressway and isolated markers are the highway in reality. These five routes
contain both the highways and expressways, which also cover both the east-west and north-south directions in
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Table 1. Detailed information of the 5 experimental routes in Fig. 11.

Route A B C D E

Length (km) 12.7 17.4 36.8 12.5 16.8

Length of Expressway (km) 8.73 15.35 36 4.46 14.28

Length of Highway (km) 3.97 2.05 0.8 8.04 2.52

Number of Traffic Lights 15 19 5 18 17

Average Velocity (km/h) 49.7 51.2 56.1 45.4 53.7

1 km

Route A

Route B

Route C

Route D

Route E

Fig. 11. Experimental routes in the evaluation and their total length is about 96km.

the city. Their more detailed information is summarized in Table 1. In particular, the longest testing route (Route
C denoted as � in Fig. 11) lasts about 36.8 km and only 0.8 km of them is on the highway. The shortest route is
Route D of 12.5km, in which the length of its highway lasts longer than its expressway.
Throughout the experiments, each route is evaluated multiple times, in 1) different times of a day, e.g., in the

daytime, at night, at sunset and at nightfall with different traffic patterns and light conditions on the road, and 2)
also with different weather conditions, like sunny and rainy, to achieve a comprehensive performance evaluation.
The total traveling distance is more than 300km in the evaluation, and we report Amateur’s performance from
the following four detailed aspects in this section.
As Amateur consists of two major modules, i.e., host lane identification and intersection inference, in this

section, we first evaluate the performance of these two modules individually (Sections 4.2 and 4.3) as follows.

Host lane identification. For the host lane identification, we adopt the accuracy rate to evaluate its performance,
which is defined as the ratio between the correctly placed lane-changing arrows and the total number of such
arrows displayed during the navigation. We check the accuracy of host lane identification under different
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Fig. 12. Investigation of the three features, i.e., h, p and w in Fig. 2, to detect the gray-scale pixel value peaks.

conditions. If host lanes are determined correctly, lane switching arrows can be properly displayed. In addition to
the accuracy, we also investigate the parameter settings and the particle filter convergence speed for this module.

Intersection inference. For the intersection inference module, we also use the accuracy to quantify its per-
formance. As we record all the navigation videos for obtaining the ground truth, we can manually check the
traffic light detection accuracy for the evaluation. On the other hand, we also examine the position difference
between the placed turning arrows at each intersection, which reflects the effectiveness of the pin-hole model.
Intersection inference is evaluated on highways, since there are no traffic lights on expressways. On expressways,
identifying the correct lane alone is sufficient to navigate the driving.
In addition to the investigation of these two individual modules, we further evaluate the overall instruction

correctness performance of Amateur in Section 4.4 and also conduct a concrete user study in Section 4.5.

Instruction correctness. We then test whether the pop-up instructions from Amateur are correct or not,
comparing with the ground truth obtained from our manual investigation of the live video off-line. For each
trip in the experiment, all the annotation instructions from Amateur can logically form a vector, in which each
element is one of the four annotation arrows depicted in Fig. 10.

User feedback. Finally, we conduct the survey from each taxi driver to get their feedback to Amateur compared
with the traditional navigation service.

In the following, we report the evaluation results for each of the four aspects above.

4.2 Host Lane Identification

In the host lane identification module (Section 3.2.2), we utilize three features, i.e., h, p and w in Fig. 2, to detect
the gray-scale pixel value peaks, which correspond to the candidate lane boundaries. In this section, we first
examine each of these features to verify the design efficacy. In Fig. 12(a), the height of each detected peak, h, varies
from 100 to 218. The difference comes from the light intensities and we observe that the pixel value increases
dramatically on the lane boundary markers. Fig. 12(b) further indicates that the prominence of a peak, p, is also
sharp, e.g., varying from 20 to 159. Finally, Fig. 12(c) shows that the width of the peak, w , is sufficiently wide
enough, ranging from 12 to 49.

The host lane identification in Amateur is based on the particle filter. In Fig. 13, we first investigate the latency
spent by this particle filter design. In particular, we test this latency performance for different types of roads
(with two lanes up to five lanes). We record the time until the particle filter correctly identifies the host lane by
comparing with the ground truth. From the result, we can see that the average latency varies from 0.74s to 3.83s
when the number of lane increases from 2 to 5. Fig. 13 implies that the host lane identification in Amateur is
reliable as long as enough time is given. However, in practice, it may not be possible to wait for a relatively long
time, e.g., up to 4.85s on the road of five lanes, to identify the host lane for only once. We thus consider a more
stringent setting to evaluate the host lane identification next.
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Fig. 13. Latency to correctly identify the host lane on the
roads with different numbers of lanes.
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Fig. 14. Average delay to identify the host lane (left y-axis) and
the identification accuracy (right y-axis) on the roads with dif-
ferent number of lanes.

In Fig. 14, we further examine the host lane identification performance within a short time window, e.g., 2s . In
particular, after the particle filter starts a host lane identification, if the weight is larger than 0.5 (according to the
design in Section 3.2.1) on one lane within 2s , it is reported as the current host lane. If the 2s time window is
reached but there is no lane accumulating a larger weight, the filter outputs the lane with the highest weight at
this moment as the host lane. Then for different types of roads (with two lanes up to five lanes on the x-axis), we
report the average latency for the host lane identification (left y-axis) and the identification accuracy (right y-axis)
in Fig. 14. When the number of lanes is small, e.g., 2, the particle filter converges in nearly 0.5s and achieves 100%
accuracy. As the number of lanes increases, the accuracy decreases, e.g., for a road of five lanes, the accuracy is
92.7%. The performance slightly degrades for more lanes because the distribution of particles is more dispersed
and the peak amount increases as well. In this case, the confidence of each peak is reduced (spreading to other
peaks). As a car normally stays on a road segment longer than 2 seconds, it explains the good performance
achieved by our host lane identification design in practice.

4.3 Intersection Inference

For the intersection inference module, we first examine the accuracy of the traffic light detection. Since there
are no traffic lights on the expressway, the results in Fig. 15 are all from the common roads. As the red light
has the longest wave length than other two lights (green and yellow), it has a better penetration and Amateur
mainly detects the red light on the screen. From the result, we can see that the detection rate for the red light
is highly accurate, where the precision and recall are 99.72% and 99.28%, respectively. As a comparison, if we
detect all other two lights at the same time, the precision and recall could slightly degrade to 99.61% and 95.29%,
respectively. The reason is that the vehicles are static when detecting red lights. In fact, Amateur can tolerate
certain miss-detected traffic lights. We only need to find out the positions of traffic lights on screen when vehicles
are distant to lights. Those lights locating at the next intersection can be detected when cars are about 50 meters
away from them, which is enough for drivers taking actions and for Amateur displaying instructional annotations
on the screen.

After the traffic light is detected, Amateur applies the pin-hole model to determine the position on the screen
to display the turning arrow. In our current implementation, the end of a turning arrow is displayed near the
middle of the screen’s center line and its upper part should ideally align with the intersection in front of the
car. However, due to the measurement error, the turning arrow may exhibit an offset with respect to the actual
intersection position in the screen, which is denoted as Δ in Fig. 16.
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Fig. 15. Precision and recall of the traffic light detection. We compare the detection for red light only and the detection for
all three lights together.
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Fig. 16. Illustration of the turning arrow placement
offset.
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on the scree between Amateur and GPS readings in the unit of pixel.

In Fig. 17, we plot the CDF of Δ for all the turnings encountered in our experiment. In addition, we also compare
with the performance achieved by the traditional navigation service based on GPS (its result is computed for
the evaluation only, not displayed on the screen). From the result, we can see that the average and maximum
placement offsets of GPS are 49 (12m in terms of distance) and 127 (41.2m) pixels, respectively. Amateur could
reduce them to 44.7 (9.6m) and 105 (26.5m) pixels, respectively. After we analyze the captured video for each
turning, we find that two methods perform comparably when the GPS signals are strong, while Amateur can
leverage the pin-hole model to further improve the GPS’s performance in the areas with more skyscrapers nearby.
In Fig. 18, we show a series of concrete Amateur’s navigation cases in different scenarios. Compared with

the traditional navigation service based on the digit map as in Fig. 18(a), Amateur is more convenient and user
friendly. We also find that Amateur performs well even in the rainy and dim environments. In particular, in the
dim conditions, such as in Fig. 18(b), (c) and (e), cameras automatically increase the exposure time to improve
the frame quality. However, the increased exposure time may affect the detection of flickering of LED bulbs. To
address this issue, we currently divide each second into two 0.5s parts — one for the flickering capture and the
other part after a longer exposure time for getting clear frames. We can also utilize the latest smart phone like
Samsung Galaxy S9, Huawei P20 Pro for better image quality in dimmer environment. Fig. 18(e)–(h) further show
the lane switching arrows after the lane-changing event is detected. The number above the arrow indicates the
number of lanes that the car should change.

4.4 Instruction Correctness

To evaluate the overall instruction correctness, we leverage the Levenshtein distance metric [26] to measure the
difference between the ground truth vector and the generated vector by Amateur. It counts howmany instructions
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Fig. 18. Screen shots of Amateur and traditional navigation service. (a) Traditional navigation service; (b) Turning arrows
at night; (c) Turning arrows at rainy sunset; (d) Turning arrow in rainy daytime; (e) Right 1-lane changing; (f) Right 2-lane
changing; (g) Left 2-lane changing; (h) Left 2-lane changing at sunset.

in the generated vector by Amateur need to be modified, so that it becomes the same as the ground truth vector.
Suppose the generated vector is Vдen = {LC2,L,RC1,R} and ground truth vector is Vtru = {LC1,L,RC1,R}. In
these two vectors, LC2 means “left changing by 2 lanes”; RC1 means “right changing by 1 lane”; L and R mean
“turning left” and “turning right”, respectively. The Levenshtein distance betweenVдen andVtru is 1, which means
editing one element in Vдen , from LC2 to LC1, can make these two vectors equal. In general, the smaller the
Levenshtein distance indicates higher instruction correctness.
Fig. 19 illustrates the statistical results of Levenshtein distance on each road and examine its performance

under different time slots when there are different traffic patterns, i.e., morning peak, evening peak and off traffic
peak. From the result, we observe that Route C has the largest Levenshtein distance 9 when running Amateur
during the evening peak, while the smallest one is on Route A without the traffic peak. In Fig. 19, compared with
the total number of annotations made for each road, i.e., 43, 74, 101, 67 and 86 for Routes A to E respectively, the
instruction correctness of Amateur is high ranging from 88.4% to 97.3%.
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Fig. 19. Accuracy of arrow placement on the different routes with different traffics.
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Even the accuracy may vary in different traffic conditions, we find that none of instruction errors lead to
the wrong navigation destination. To further understand the reason of these annotation errors, we refer to the
ground truth and observe that the errors are all caused by the lane-changing event. When the current host lane is
detected wrongly, Amateur will recommend drivers to change the lane, which actually is not needed. However,
Amateur keeps tracking the host lane by our particle filter design and this unnecessary lane-changing can be
corrected by changing back to the real interested-lane, which is essentially error-tolerant. After we examine
the ground truth, we find that the reason to cause the host lane detection error is mainly due to the shield of
lane markers by nearby vehicles or some bright reflections on the road (i.e., noise). Fortunately, nearby cars do
not cover the lane markers at the same position for very long time. Their impact is thus temporary. Moreover,
the error rate itself is not high, e.g., less than 10%. Therefore, we observe that such errors did not cause the
navigation to a wrong destination throughout our experiments. Please note that in case that Amateur made
a wrong navigation, similar as the existing navigation systems, it will re-calculate the route and treat it as a
new navigation from the current location to the destination. In summary, Amateur can provide convenient and
reliable navigation experience in practice.

4.5 User Study

4.5.1 Study Design. Finally, we conduct a with-in subject user study with 50 taxi drivers to understand the user’s
experience of Amateur in practice and we also compare it with the traditional navigation method, e.g., Google
Maps. In the user study, taxi driver uses one of two navigation systems (Amateur or Google Maps) first on route
D of Figure 11. After the taxi reaches the destination, we ask the driver to come back to the origin and drive again
using another one. For the first 25 taxi drivers (Group A), they use Amateur first and then Google Maps. The
other 25 taxi drivers (Group B) switch the order of the system usage. This is a standard technique named Latin
Square [31] to counterbalance the order effect. After arriving the destination each time, the taxi driver rates the
system just used for the navigation. The questionnaire is detailed in Table 2.

Table 2. Likert scale rating questions in our user study.

No. Rating Question Statement

Q1 It was easy to navigate using this navigation service.

Q2 I need to pay extra attention on this navigation service when driving.

Q3 This navigation service provided user-friendly guidance.

Q4 This navigation service was useful in helping me navigate properly.

Q5 It was easy for me to learn how to use this navigation service.

Q6 I paid most of my attention on driving using this navigation service.

Q7 The guidance was user-friendly to interact with.

Q8 This navigation service provided me with effective guidance.

1) Question design. For the question design, we consider the following four key points that we believe are
important to evaluate a navigation system.

• Ease of use: we propose Q1 and Q5 in Table 2.
• Perceived distraction: we propose Q2 and Q6 in Table 2.
• Navigation experience: we propose Q4 and Q8 in Table 2.
• User-friendliness: we propose Q3 and Q7 in Table 2.

In particular, “ease of use” and “navigation experience” have been adopted in a prior simulated AR-based
navigation design [21]. Since they have different survey targets, we only utilize these two points instead of
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Table 3. Detailed information of the participating drivers.

Property Description of Group A Description of Group B

Age (Year) 32-61 (Mean 40.3) 31-57 (Mean 42.8)

Driving Experience (Year) 2-27 (Mean 15.8) 1-30 (Mean 17.6)

Gender 21 Male (84%), 4 Female (16%) 19 Male (76%), 6 Female (24%)

their exact questions. In addition, we further propose “perceived distraction” and “user-frienliness” in our user
study, which are closely related to our design. Based on the theory from MIS (Management Information System)
research domain, two questions for each aspect could improve the reliability and validity of our questionnaire [7].
2) Participants. Table 3 summarizes the detailed information of the participanting taxi drivers. In Group A,

there are 21 male and 4 female drivers. Their ages are from 32 and 61 years old (Mean: 40.3 years old) and driving
experiences are within 2 to 27 years. In Group B, there are 19 male and 6 female drivers. Their ages are from 31
and 57 years old (Mean: 42.8 years old) and driving experiences are within 1 to 30 years.

3) Rating methodology. For each question, we adopt the standard 7-point Likert scale rating mechanism, where
each question will be rated by a scaling score from 1 (strongly disagree) to 7 (strongly agree). The results from
these 50 taxi drivers are summarized in Fig. 20.
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Fig. 20. Results of Likert scale rating (1: strongly disagree ∼ 7: strongly agree). On x-axis, ‘A’ means Amateur; ‘G’ means
Google Maps and the following number is the question number in Table 2. Median is shown as a �. The ratings for A4, A6
and A7 have different means and standard deviations. However, due to the illustration, they look to be identical in the figure.

4) Numeric analysis. With the 7-point Likert scale rating mechanism and the results in the Fig. 20, we can then
apply the standard method called Wilcoxon Signed Rank Tests to mathematically analyze the user study, where
the significance level is set as α = 0.05. The results of inferential statistics analysis and the observations are
detailed in the following.

4.5.2 Results. With the 7-point Likert scale rating mechanism, we then apply the standard method to mathemat-
ically analyze the user study and obtain the insight for each question design considerations. In particular, the
p-value results are summarized in Table 4 and we have the following observations.

• For the ease of use, the results show that there was a significant difference between the two systems
(p = 0.0016) for Q1. Fig. 20 depicts that Amateur is easier to use comparing with Google Maps, where the
mean of our system A5 (i.e.,meanA1 = 5.78) is larger than that of Google Maps G5 (i.e.,meanG1 = 5.44) . In
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Table 4. The p-values for the 7-point Likert scale rating questions.

Question No. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

p −value 0.0016 < 0.0001 < 0.0001 0.0003 < 0.0001 < 0.0001 < 0.0001 < 0.0001

addition, there was a significant difference between two systems (p < 0.0001) for Q5. The result indicates
that Amateur is easier for drivers to learn how to use the navigation system than the traditional service
Google Maps as in Fig. 20, wheremeanA5 = 6.08 andmeanG5 = 5.42.

• For the perceived distraction, the result indicates a significant difference of two systems for both Q2 and
Q6 (p < 0.0001 for both). The drivers pay more attention on the traditional service (i.e.,meanG2 = 5.5) than
that of Amateur (i.e.,meanA2 = 3.72). The rating results also show that drivers focus more on driving when
utilizing Amateur while they might focus more on the navigation display when utilizing the traditional
service. The averaged ratings aremeanA6 = 5.9 andmeanG6 = 4.26. Therefore, Amateur can cause much
less distractions than the traditional service.

• For the navigation experience, the results of Q4 and Q8 showed that there were significant differences
between two systems, with p-value being p = 0.0003 and p < 0.0001 for Q4 and Q8 respectively. The drivers
gave better ratings for Amateur (meanA4 = 5.94,meanA8 = 6.2) than the traditional service (meanG4 = 5.44,
meanG8 = 5.56).

• For the user-friendliness, two systems also exhibit quite different results (Q3:p < 0.0001 and Q7:p < 0.0001).
Compared to the traditional system (meanG3 = 4.76,meanG7 = 4.92), Amateur is more user-friendly in the
rating results withmeanA3 = 5.76 > meanG3 andmeanA7 = 6 > meanG7. The main reason is that the AR
display is much easier to understand for the drivers, which is also our original motivation.

In summary, the results indicate that Amateur can provide a better navigation service than the traditional
method for the ease of use, perceived distraction, navigation experience and user-friendliness four aspects.

5 LIMITATIONS AND DISCUSSIONS

In this section, we discuss some limitations of our system and the potential future works.
1) Brightness requirement. The primary requirement of Amateur is that the environment cannot be completely

dark. We have tested Amateur at different time periods of a day. The system works well in the daytime and
dimmer environments. Since Amateur utilizes general camera, if the environment is completely dark, Amateur
cannot extract information from the captured images. Nowadays, the camera advances rapidly on smart phones
and one major effort of smart phone companies is to improve the picturing performance in the dark. In the
near future, once camera can capture more meaningful contents in a dark environment, this limitation can be
alleviated and the performance of our system can be improved accordingly.
2) System setup. To deploy a smart phone with Amateur on a car, we need the following two setups. First,

the phone needs to be placed along the gravity direction, which is required by the pin-hole model. Fortunately,
the motion sensor (more precisely the gyroscope) on the smart phone provides accurate measurement of the
posture which we can leverage in the setup phase. The phone posture may not strictly align with the gravity
direction even after the setup phase. Through our experiment, we find that the detected position of intersection
on the screen could differ from its real position on the screen in tens of pixels, which is still acceptable. Second,
we need to select the position of a narrow strip for Amateur to perform the lane boundary detection. In our
implementation on Nexus 5X, the current setting of the 230 pixels corresponds to a horizontal line about 5 meters
in front of the car. In the future, we plan to introduce a narrow strip appeared on the Amateur’s UI and let the
driver drag this strip on the screen and move to the appropriate position, which gives the driver freedom to
configure this system parameter. We note that these setups are one-time overhead for installing Amateur.
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3) Availability of traffic light information. In Amateur design, we leverage traffic lights as an indicator of the
position of intersection using a pin-hole model. This model needs the traffic light height as one input. However
we may lack the specification for this information in some cities. In some scenarios, e.g., usually outside of the
city, the traffic lights may even miss at intersections due to lack of the infrastructure. In these cases, GPS always
serves as a fall back solution to provide the estimated distance to the front crossroad. Such a distance can also
help determine the arrow’s position in the video. As a matter of fact, our design incorporates with GPS (instead
of being independent with GPS) and takes the GPS reading as one system input. However, GPS could become
inaccurate in many urban areas, and the detection of the traffic light essentially provides an opportunity to
leverage the pin-hole model to improve the distance estimation. To further improve the availability of the traffic
light height information for more cities, such a database could be constructed through the crowdsourcing, which
is one feasible solution to overcome this limitation in the near future.
4) Camera’s field of view. For the general camera, we find that it can capture five lanes at the same time. If a

road has more than five lanes, as long as Amateur has detected one of the left most or right most lanes initially
(most likely since a car rarely starts at the center of one road), the particle filter can continuously track the host
lane. In case that the host lane tracking is lost or inaccurate for a long time, the driver can explicitly change the
lane to let Amateur detect one of the left most or right most lanes to track the host lane again.

5) Camera sampling rate. In our current design, we set the sampling rate of the camera sensor at 30 frames per
second (FPS). We find that the difference between consecutive frames is acceptably small for the normal driving
speed, e.g., < 30km/h. A larger speed may cause larger difference in subtracted image, leading to longer time
to detect the traffic light. Higher sampling rate (e.g., 120 FPS or 240 FPS) can ensure a reliable detection even
under a high speed, but it increases the computing overhead. This is a trade-off between the efficiency and the
computing overhead. We believe that as smart phones have more powerful CPUs in near future, Amateur can
support higher sampling rates, which can further enhance the performance of Amateur.

6 CONCLUSION

This paper presents an augmented reality based vehicle navigation system, called Amateur, using commodity
smart phones. Amateur can automatically display navigation instructions as a series of annotative arrows on
the live road condition video stream to assist the driving. The system design encounters host-lane identification
and intersection determination challenges. We propose a set of effective techniques to address these issues and
our solution can comfortably work with lightweight smart phone platforms. To demonstrate the efficacy of the
Amateur design, we implement the system on Android phones. The experimental results indicate that Amateur
can improve the navigation service from four important aspects: ease of use, perceived distraction, navigation
experience and user-friendliness.
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