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Abstract—Service disruptions of rail transit systems become
more frequent in the past decades in urban cities like Singapore,
due to various reasons such as power failures, signal errors, etc.
We study and predict the impact of disruptions to transit systems
and commuters. This benefits service providers in making both
short and long term plans to improve their services. Specifically,
we define two metrics, stay ratio and travel delay, to quantify the
impact. To tackle the main challenge of abnormal data scarcity,
i.e., only 6 observed disruptions in our one-year data records,
we propose to format the problem into a training problem
on a feature space relevant to alternative route choices of the
commuters. We demonstrate the new feature space corresponds
to more similar data distribution among different disruptions,
which is beneficial for training more generalisable predictors for
future disruptions. We implement and evaluate our approach
with a real-world transit card dataset. The result clearly shows
that our method outperforms a range of baseline methods.

Index Terms—Service disruption, impact prediction, data
scarcity

I. INTRODUCTION

The rapid rail system is the backbone of the public transit
systems (PTS) in urban cities. Malfunction of the rail system
even in a small region may have ripple effects and significantly
impair the PTS. According to our study on Singapore Mass
Rapid Transit (MRT) rail system, major disruptions take
place due to many reasons including technical faults, extreme
weathers, human injuries, etc. The journey of thousands or
even tens of thousands of commuters may be impaired. Many
of them have to quit the PTS and resort to other transportation
alternatives (e.g., taxis).

This paper aims at predicting the impact of rail system
disruptions at the time of occurrence. Such knowledge not only
benefits the PTS provider in understanding the degradation of
service, making better emergent plans and planning appropri-
ate new services in PTS to improve system resilience, but also
benefits commuters in preparing for the hazards brought by
disruptions [1] [2]. Specifically, we define the following two
metrics to assess the impact of disruptions. (1) Stay ratio
indicates the percentage of rail riders who choose to stay
within the PTS and take alternative rail lines and/or buses to
complete their trip. (2) Travel delay indicates the extra time
spent on alternative routes for those who stay within the PTS.
Obviously, higher stay ratio and lower travel delay indicate
smaller impact by a disruption.

Although there have been efforts made to analysing the
influence of abnormal conditions of railway on commuters

[3]–[5], most of them apply empirical knowledge or simplified
human behaviour models to reason human choices, and based
on that analyze the impact on commuters. Some exploit real
transportation data to understand human behaviours, but they
are often limited to normal PTS conditions. In this paper,
taking a unique approach, we explore the transportation data
during rail system disruptions and learn from the true human
choices. We train a human behaviour model from those
abnormal data and apply the model to predict the impact of
future disruptions.

Being simple in rationale, our approach is especially chal-
lenged due to the scarcity of abnormal data, i.e., those from
only 6-8 major disruptions per year. A direct challenge comes
from the lack of training data for us to build an accurate
model using supervised learning. The limited observation of
disruptions makes the trained model difficult to generalize, i.e.,
applicable to future disruptions unseen in the training stage.
The problem becomes more challenging if we consider that
only the trips of regular commuters (which is a small portion
of the total affected commuters) can be utilized to analyze
human behaviours, extract features and label impact metrics,
because for irregular commuters there is no way to infer their
original travel intention and thus no confidence with regard to
their choices under disruptions.

In order to address the above challenges, we propose a
novel idea of domain projection to tackle the data distribution
mismatch between training and testing sets especially in the
situation of data scarcity. Similar but different to the situation
of canonical transfer learning, our data in both the training
and testing sets is scarce and hence no big picture of the
distribution can be profiled. Therefore, we claim the impor-
tance of proactively finding a feature space where the training
and testing disruptions share similar distributions of extracted
features. Specifically, the proposed domain projection method
converts the original training problem on the feature space
relevant to disruption itself to a new training problem on a
different feature space relevant to alternative route choices of
the commuters, which unifies our view of disruptions by their
effect on commuter route choices. A model trained from the
converted feature space can thus be generalized to arbitrary
disruptions as long as the commuter route choices can be
inferred from the disruptions.

Our contributions are summarized as follows:
• To the best of our knowledge, this is the first study of



impact prediction of rail system disruptions that learns
models from true human behaviours in disruptions.

• We propose a novel domain projection method to address
the challenges arising from data scarcity, with which we
are able to build an accurate and more generalizable
model for arbitrary disruptions.

• We implement and experimentally evaluate our approach
with the Singapore MRT ride records in year 2015 that
involve 6 major disruptions. The results demonstrate that
our method outperforms all the baseline methods.

The rest of the paper is organized as follows. Section
II presents the definition of the problem. Section III to IV
detail our method for impact prediction. We present evaluation
settings and results in Section V. We review the related work
in Section VI and conclude this paper in Section VII.

II. PROBLEM DEFINITION

In this section, we define the problem of impact prediction
of disruptions, and present an overview of our methodology.

We treat a rail network as a directed graph G = (V,E),
where V represents the set of stations and E the directed rail
links between stations. A disruption results in some link(s)
removed from the graph. Each disruption lasts for a period
of time which is usually unknown at the time of occurrence.
We only consider major disruptions which last longer than 30
minutes. A formal definition of disruption is given as follows.

Definition 1 (Disruption). A disruption refers to a period of
no train service on a set of adjacent links of G. A disruption
e(i), i = 1, 2, ..., is represented by a tuple (T (i), G(i)), where
T (i) is the starting time and G(i) = (V,E(i)) is the disrupted
rail network (E(i) ⊆ E) with E \ E(i) removed links.

Due to the disruption, stranded commuters either stay in the
PTS (e.g., wait for system resumption, or choose alternative
routes from bus network and the remaining rail network) or
leave the PTS and look for other transportation modes (e.g.,
taxis). We use Voronoi Diagram [6] to partition the city into
Voronoi cells centering at rail stations, where each cell is a
region containing the rail station and nearby bus stations. We
can then describe each of the commuter trip as an OD (Origin-
Destination) sample between any two of those regions. Then,
we define affected ODs formally as below.

Definition 2 (Affected OD). During a disruption e(i), an
affected OD is a pair of stations (u, v) that is unreachable in
G(i), or is tortuous, i.e., d(i)(u, v)−d(u, v) > λ, where d(u, v)
and d(i)(u, v) are the topological distances between u and v
respectively in G and G(i). λ is a scalar set to be sufficiently
large (e.g., λ = 10).

Affected commuters of a disruption are those with their OD
being one of the affected ODs of that disruption. In this paper,
we aim at training two impact predictors separately for two
impact metrics, namely, stay ratio and travel delay. Formally,
given an affected OD (u, v) of a disruption e(i), the stay ratio
I
(i)
s (u, v) and travel delay I(i)t (u, v) are defined as

I(i)s (u, v) = r̃(i)uv/ r
(i)
uv , (1)

I
(i)
t (u, v) = t̃(i)uv − t(i)uv . (2)

where r(i)uv , t(i)uv are the normal ridership and travel time on the
original (rail) route, and r̃

(i)
uv , t̃(i)uv are the disruption-affected

ridership and (averaged) travel time on alternative routes in
PTS, between (u, v) during the disrupted period of the day.

We were granted access to over one-year transit card records
of bus and rail rides in Singapore from June 2015 to June 2016.
Each record contains user ID, boarding and alighting stations
and timestamps, as well as the bus/rail service name. We also
obtained the information of historical disruptions from Singa-
pore MRT operators from their official Twitter announcements
that contains disruption date, starting time, ending time, and
location (i.e., rail line and the stretch of disrupted stations).
We specifically study those data on working days.

To train the impact predictors, we first propose the domain
projection to convert the prediction problem in the domain
of disruption into that in the domain of interested alternative
routes (IARs) that may be chosen by the commuters during
disruptions, where we may address the challenge of data
scarcity and train a generalizable model (Section III). Regular
commuters are identified from historical trips, whose travel
patterns under normal conditions are stable and their choices
under disruptions will be utilized to label impact metrics and
to construct impact predictors. After that, we generate IARs
and construct impact predictors using light-weight machine
learning techniques (Section IV). For a given affected OD in
a given disruption, the two predictors can give anticipated stay
ratio and travel delay as a result of the impact.

III. DOMAIN PROJECTION

In this section, we describe the idea of domain projection,
which attempts to find a feature domain where the trained
model is more generalizable to future disruptions.

Impact metrics are related to features of disruption and
affected OD. For example, a disruption with more broken
links may lead to a lower stay ratio due to the greater
mismatch in a sudden between transit demand and capacity,
and a larger travel delay due to longer travelling time on
alternative routes in PTS. A straightforward solution is to train
a model via supervised learning based on disruption and OD
features such as starting time, number of broken links, etc.
Such a method, however, may result in under-fitting since the
model being trained on scarce training disruptions may not
capture the functional relation, between features and impact
metrics, that can extend to future disruptions. To illustrate
such a view, we name the domain of disruption and OD
features as D1 = (X1, P1), where X1 is a d1-dimension feature
space, and each affected OD can be represented by a point
X = {x1, ..., xd1

} ∈ X1 with the probability denoted by
P1(X). We visualize affected ODs of observed disruptions as
points in X1 (features listed in Table II), using PCA (principal
component analysis) to reduce them to planar points. From the
result plotted in Figure 1(a), we see that distributions of points
of different disruptions hardly coincide. Essentially, such a
problem results from the limited number of disruptions that
we can observe - the data distribution of what we can observe
and the data distribution of what we want to predict mismatch.
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Fig. 1: Visualizing points of affected ODs of 6 observed
disruptions in (a) domain D1 and (b) domain D2 .

We propose to translate the prediction problem in domain
D1 to a new domain D2, where the feature space has the fol-
lowing property: all observed disruptions should contain points
of similar distribution. This guarantees the model applicability
to future disruptions potentially with similar distribution. In
our case, we aim at describing an disruption around the
features of IARs (interested alternative routes), which are
the alternative routes in PTS likely to be chosen by affected
commuters. For an affected OD, the features of available IARs
influence the choices of affected commuters, because they
concern whether the IARs satisfy their requirements, e.g., a
short waiting time, no transfers, etc. The travel time of an
IAR is also closely correlated to the travel delay. Therefore,
we denote the new domain as D2 = (X2, P2), where X2

is a d2-dimension feature space of IAR features (listed in
Table III that are categorized into service-wise and route-
wise features). Each affected OD can be represented by a
point X = {x1, ..., xd2} ∈ X2 with the probability denoted
by P2(X). For comparison, we visualize affected ODs of
observed disruptions as points in X2 in the same way as
what we do in X1. We can see from Figure 1(b), that the
clusters of points are mixed across disruptions, suggesting
highly overlapped distributions in the feature space X2.

IV. IMPACT PREDICTION

In this section, we first show how to identify regular
commuters and analyse their choices under disruptions. We
then describe how we generate interested alternative routes
(IARs), based on which we build impact predictors.

A. Obtaining Regular Commuters

Affected commuters have three choices: taking alternative
routes in PTS, taking other transportation modes, or mixing
of both. From the transit card records, we are able to find
their traces in PTS during disruption. However, as travel plans
of the commuters might change day by day, rendering the
difficulty of deciding their original OD, it is non-trivial to infer
affected commuters’ choices. We propose to identify regular
commuters whose travel behaviors (i.e., departure time and
OD) are relatively stable and thus their original OD can be
determined. After that, we focus our study on those regular
commuters on behalf of all PTS users.

To identify regular commuters for a specific disruption, we
obtain the list of ODs for each commuter during the disruptive
hours of the day during a sufficiently long past period (e.g.,
pass two months) before the date of disruption. Then the
frequencies of distinct ODs in the list are denoted by m1, m2,
..., and the highest frequency is denoted by mh. We define the
OD with frequency mh as the dominant OD. Then we start to
filter out commuters that are irregular. We remove those whose
mh < max( 12

∑
imi, ε), to filter out occasional riders to the

rail system and ε is set to 5. We then cluster commuters with
the same mh value together. In each cluster, we remove top-
25% commuters with the largest entropy, i.e., −

∑
i qilogqi,

where qi = mi/
∑

imi. We assume dominant OD as the
regular commuter’s original travel plan, and consider only
affected regular commuters whose dominant OD is one of the
affected ODs.

B. Analysing Under-disruption Choices

Given the set of affected regular commuters, we further
analyse their choices under disruptions. We find that over 90%
of affected ODs have a low stay ratio which is less than 0.5,
indicating that affected commuters are prone to leave the PTS
when a disruption occurs. For those who stay in PTS until
arrival, over 90% have less than 50 minutes travel delay.

In addition, we analyse the alternative routes chosen by
commuters who stay in PTS until arrival. A route is repre-
sented by a list of bus and/or rail services, each of which is
indicated by the bus service name or a pair of rail stations.
The corresponding list of transit modals for an alternative route
is regarded as its route pattern. We find that the top-4 route
patterns chosen by affected commuters, namely (bus,), (bus,
bus), (bus, rail) and (rail, bus), account for a percentage of
86%. Besides, the walking distance between two successive
services is usually within 500 meters, and the detouring rate
(i.e., the ratio of the distance of alternative route to that of the
original route) is less than 1.5. These will serve as constraints
when we generate IARs in Section IV-C.

C. Interested Alternative Routes Generation

For each affected OD, we first generate candidates by
routing on the network of bus and disrupted rail systems using
depth-first searching [7]. Candidates should satisfy constraints
about walking distance (< 500 meters), detouring rate (<1.5)
and route pattern (being in top 7 patterns) mentioned in Section
IV-B. We also gather real IARs from our transit records.
We label real IARs by 1, and negative candidates that are
not real IARs by 0. The number of real IARs is extremely
limited (i.e., around 2.6 per affected OD) while the number of
candidates is huge, leading to a significant imbalance (about 1
to 15,000) between the two classes. To alleviate the imbalance,
we conduct negative sampling on the set of candidates. That is,
to sample instances of candidates according to their similarity
to real IARs, i.e., the more similar an instance is to any of the
real IARs, the higher probability it is being sampled. To be
specific, we consider several dimensions for similarity, namely,
the numbers of service transfers, rail stations and bus stations,



as well as the length of waiting time and the distance of
walking. Each dimension is normalized into the range of [0, 1].
Then each candidate is represented by a 5D vector, and the
similarity between any pair, one from real IARs and the other
from candidates, is calculated by cosine similarity.

We use the features in Table III as well as the labels
from real IARs and sampled negative candidates to train a
binary classifier for IAR identification, so that for any future
disruption we can use it to distinguish real IARs from others.
We train the classifier using ensemble learning, a supervised
learning method that trains a couple of models (i.e., Decision
Tree in our case) using different subsets of training data, and
aggregates the results by majority voting. It also restrains
the class imbalance problem. For any affected OD of future
disruptions, we can first generate candidate IARs and then
identify real IARs using the classifier.

D. Predictors Building

We train the stay ratio and travel delay predictors separately.
Given an affected OD, we leverage Equation (1) and (2) to
calculate stay ratio and travel delay (i.e., labels). And for the
input, the features of each IAR are concatenated to form a
vector (inapplicable features are filled by zeros). Each IAR
belongs to one group according to the length of route pattern.
In each group, element-wise statistical aggregations, namely,
mean, max and min, over all group members are calculated and
we append the result together to form the aggregated vector.
We then concatenate the aggregated vectors of all groups (in
ascending order by the length of route pattern), to form a new
feature vector, where backward elimination [8] is conducted
to select final vital features. With the training samples of
processed IAR features and labels we apply SVR to model the
relationship between the IAR features and two impact metrics,
and train the two predictors.

V. EVALUATION

A. Experimental Setup

We obtain the information of disruptions (e.g., time and
locations) from instant tweets posted by MRT operators. We
finally get 6 major disruptions between June 2015 to June
2016, detailed information of which are summarized in Table
I. In addition, to identify regular commuters and generate
alternative routes, PTS static metadata (i.e., bus/rail routes,
station ids and locations) are obtained from the LTA Online
Datamall [9], and walking/travel distance between geographi-
cal locations are acquired via Google’s Direction APIs.

We conduct experiments for the following methods:
• D1-SVR: which is built on original problem domain D1

with SVR applied to features of disruption and affected
OD listed in Table II. Backward elimination is used
before training the model.

• PIRD: Predicting Impact of Rail Disruptions, the method
proposed in this paper, using IAR features in Table III.

• D2-Oracle: which is built on domain D2 and is im-
plemented the same way as PIRD, but with feature
input from real IARs (which are not available during

TABLE I: Summary of the 6 disruptions.

date start
time

dur-
ation
(min)

affected
line(s)

#links
re-

moved

#affected
com-

muters

#regular
com-

muters
1 20150707 19:30 110 EW,NS 108 330,000 130,000
2 20151013 08:00 30 NE 12 38,000 33,000
3 20151026 05:25 90 NE 30 52,000 24,000
4 20151125 05:50 140 NS 8 79,000 33,000
5 20151217 19:50 135 EW 4 17,000 6,000
6 20160322 11:10 160 EW 6 38,000 4,000

prediction and can only be obtained after the commuters
complete their trips). This approach utilizes practically
not available information and its performance represents
the upper-bound for comparison.

• PIRD-LR: which is implemented the same way as PIRD,
except that the final regression model applied to IAR
features is linear regression instead of SVR.

• D2-SVDD: which implements the same approach as
PIRD except that it selects candidate IARs using SVDD
[10] instead of ensemble learning. Using OCC (only one
class) of positive samples avoids the imbalance issue but
loses information from negative samples.

We adopt a leave-one-out scheme to evaluate the proposed
impact predictors. Each time, we take OD samples from 5
disruptions as training set and OD samples in the remained
disruption as testing set, representing the same setting when
we apply our solution in reality, i.e., we have historical
disruptions to train predictors for a future disruption. The
hyper-parameters are tuned using 5-fold cross validation on the
training set. We run the experiment for each of the evaluated
methods 200 rounds. We use MAE (mean absolute error) to
evaluate the performance averaged over all 6 events. For each
method, we calculate an average MAE and a worst MAE over
all tested ODs. Specifically, we denote the absolute error of
the j-th OD in the k-th round when using the i-th disruption
as test data as AE(i)

jk , for k = 1, ..., 200, i = 1, ..., 6 and
j = 1, ..., Ji, where Ji is the number of affected ODs tested
in the i-th disruption. Then the average MAE is derived
as

∑
i

∑
k

∑Ji

j=1AE
(i)
jk /(200

∑
i Ji) and the worst MAE is

derived as Maxi(
∑

k

∑Ji

j=1AE
(i)
jk /(200Ji)).

B. Prediction Accuracy

Both the average and worst MAE of evaluated methods
on stay ratio and travel delay prediction are provided in Ta-
ble IV. For stay ratio prediction, PIRD provides 0.11 average
and 0.12 worst MAE, and for travel delay prediction, PIRD
gives 11.9 minutes average and 14.5 minutes worst MAE.
PIRD outperforms D1-SVR. The results suggest the training
performance over domain D2 outperforms that conducted on
D1. PIRD achieves MAEs close to that of D2-Oracle in stay
ratio prediction, which indicates our method works well in
producing real choices of commuters. The results also suggest
PIRD has close average MAEs to PIRD-LR’s in both stay
ratio and travel delay prediction, but outperforms PIRD-LR
in the worst MAE, which suggests the performance gain of
applying SVR over linear regression.



TABLE II: Features of disruption and affected OD.

No. Feature Description
1 starting time, i.e., T (each time slot of 0.5h)
2 # of removed links
3 # of affected ODs

4,5,6,7 binary value for a rail line to indicate normal/disruptive state
8,9 location (i.e., latitude and longitude) of origin station

10,11 location of destination station
12,13 the rail line where the origin and dest. station located

14 # of affected stations on the rail route between affected OD
15 # of stations from origin station to the nearest affected station
16 # of stations from dest. station to the nearest affected station

TABLE III: Features of IAR.

Type No. Feature Description
1,2 the shortest and longest waiting time
3 walking distance
4 binary value for transit modal (bus/rail)

service 5 # of bus/rail stations traveled
-wise 6,7 normal boarding/alighting ridership of the service

around T
8 # of other bus services with nearby (<500m) bus

stations
route 1 # of bus/rail services
-wise 2 normal ridership of the first service

3 # of rail stations travelled in the original route

TABLE IV: MAE comparison of different methods.

Impact Metric D1-SVR PIRD-LR PIRD D2-
Oracle

avg. stay ratio/
travel delay(min) 0.16/13.8 0.11/11.4 0.11/11.9 0.11/10.2

worst stay ratio/
travel delay(min) 0.22/15.5 0.14/15.1 0.12/14.5 0.14/11.2

TABLE V: Performance comparison with variant approach.

stay ratio
avg./worst MAE

travel delay
avg./worst MAE

% of
candidates

D2-SVDD 0.13/0.14 11.8/14.9 min 8.6
PIRD 0.11/0.12 11.9/14.5 min 4.4

Figure 2(a) and (b) present statistics of prediction errors for
different ODs across different disruptions. We have two ob-
servations from these two figures. First, PIRD performs close
to D2-Oracle for most disruptions and may even outperforms
it (e.g., for the Disruption 6 due to the fact that there are
insufficient regular commuters and very few real IARs that
can be used by D2-Oracle). Second, PIRD performs well
in generalization. In the data records, Disruption 1 has 354
affected ODs, which account for 60% of the total number of
ODs in the study. When we use Disruption 2-6 as training data,
and build the model to predict the impact to ODs in Disruption
1, however, we see that the error (i.e., an average of 0.1 for stay
ratio and 9 minutes for travel delay) is not apparently higher
than what we can obtain for other disruptions. It suggests that
PIRD is able to capture critical features and has strong ability
in generalization with small training data.

We also compare the performance of PIRD and that of D2-
SVDD. Table V summarizes the average and worst MAEs
derived over 6 disruptions (based on the same procedure as
adopted for Table IV). Specifically, for stay ratio, PIRD pro-
vides smaller average and worst MAEs (0.11 and 0.12) than
D2-SVDD (0.13 and 0.14). For travel delay, PIRD achieves
very close performance to D2-SVDD but our method leverages
much less data for training, accounting for only 4.4% of all
IAR candidates while D2-SVDD’s training data usage nearly
doubles our data. The results indicate that the ensemble learn-
ing design in PIRD can effectively select meaningful IARs
that are possibly chosen by commuters during a disruption.

C. Stability

Stability provides tolerance to perturbations from training
data, which is very important to our problem as perturbations

may come from data noises, variation from new disruptions,
emergent actions taken during the disruptions, and so on. We
evaluate the stability of PIRD in comparison with other meth-
ods. Stability can be reflected from the results of predictors.
Figure 2(c) and (d) present the distributions of MAE (averaged
across 6 disruption) from each round of prediction after zero-
mean normalization, where each line represents 200 MAE
points. The sharper the ascending curve is, the more consistent
the MAEs are, indicating a stabler output. Figure 2(c) shows
that PIRD is stabler than D1-SVR and D2-SVDD, and is close
to the performance of D2-Oracle. With regard to the travel
delay in Figure 2(d), PIRD is stabler than other methods, and
even outperforms D2-Oracle mainly due to the fact that D2-
Oracle has insufficient real IARs for training stable models.
The results suggest the high stability of PIRD as compared
with other alternatives.

VI. RELATED WORK

Impact Prediction. There have been efforts made to predict
the impact of transportation incidents, e.g., railway disruption,
traffic accidents, etc. Some works predict the impact by
reasoning human reactions or the damage to network structure,
most of which lack measurement study of real incidents. For
examples, Sun et al. [5] estimates the normal spatio-temporal
distribution of commuters in rail system, and try to infer the
number of affected commuters when there is a disruption. Sun
et al. [4] try to reason commuters’ travel delay based on their
choices (e.g., stay or leave PTS). Yin et al. [11] define the
impact as the damage to rail network efficiency, and utilize
graph theory to quantify the impact of disruption. Some works
predict impact based on actual mobility data measured from
real world. Examples include Pan et al. [12] who take the
average impact of similar historical incidents to predict that
of future incidents, Fang et al. [3] who leverage contextual
features and post-incident travel delays to predict future travel
delays, and Garib et al. [13] who use statistical models
based on contextual features to predict travel delay. Most
existing studies have not thoroughly investigated the ability of
generalization and are not validated with real world incidents
at the scale of this paper. Other studies focus on forecasting
the traffic flow under anomalous conditions [14]–[16] taking
a period of post-incident traffic flow as input. The traffic
flows, however, cannot be translated to fine-grained impact
to commuters. To sum up, so far there is no existing study
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Fig. 2: (a) and (b): statistics of prediction errors for different disruptions’ ODs; (c) and (d) stability comparison between
evaluated methods for stay ratio (a) and travel delay (b).

which measures impact from real incidents, and meanwhile
explores the model generalizing ability to predict the impact
of a variety of future incidents.

Feature manipulation. The proposed domain projection
method shares similarity with some other feature manipulation
techniques, e.g., feature engineering [17]. The data distribution
mismatch between training and testing sets however is not
the focus of feature engineering. The most relevant study is
that of transductive transfer learning [18], which transfers
knowledge from the training set to the testing set when the
data distribution of their feature spaces are different. Existing
studies such as Zadrozny et al. [19] and Daume III et al.
[20] use re-sampling or statistical adaptation of the distribution
of training set to that of the testing set. All existing studies
assume ample labeled testing data, and the global distribution
of population can be profiled, which is distinct from our case.

VII. CONCLUSION

We propose a comprehensive solution to predict the impact
of rail system disruptions, based on the real behaviors of
affected commuters during disruptions. To tackle the challenge
of training data scarcity, We propose to project a disruption and
its affected OD into a different domain of features abstracted
from commuters’ alternative route choices. The training accu-
racy and generalizing ability are greatly improved. Experimen-
tal results using real-world data demonstrate the effectiveness
of our proposed solution.
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