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Abstract
This paper presents a distanceless networking approach

for wireless sensor networks sparsely deployed in large ar-
eas. By leveraging rateless codes, we provide distanceless
transmission to expand the communication range of sen-
sor motes and fully exploit network diversity. We address
a variety of practical challenges to accommodate rateless
coding on resource-constrained sensor motes and devise a
communication protocol to efficiently coordinate the dis-
tanceless link transmissions. We propose a new metric
(expected distanceless transmission time) for routing selec-
tion and further adapt the distanceless transmissions to low
duty-cycled sensor networks. We implement the proposed
scheme in TinyOS on the TinyNode platform and deploy
the sensor network in a real-world project, in which 12
wind measurement sensors are installed around a large urban
reservoir of 2.5km∗3.0km to monitor the field wind distribu-
tion. Extensive experiments show that our proposed scheme
significantly outperforms the state-of-the-art approaches for
data collection in sparse sensor networks.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless

communication; D.2.2 [Network Protocols]: Protocol ar-
chitecture

General Terms
Design, Experimentation, Performance

Keywords
Wireless sensor network, Sparse deployment, Rateless

codes, Environmental monitoring

1 Introduction
In many sensing applications for environmental monitor-

ing [8, 33, 44, 9], spatially-sparse sampling suffices to gain
adequate knowledge of the environmental phenomena in
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large areas, since spatial variation is limited and the environ-
mental data is normally spatiotemporally correlated. In these
applications, sensors are sparsely deployed, e.g., hundreds
of meters away from each other. Traditional wireless sensor
networks are not designed for such a sparse network setting.
A dense network is assumed to be deployed with sensor
motes of short communication distance, which results in a
significant deployment waste, as many sensor nodes do not
contribute to sensing data but just to maintaining the network
connectivity.

Some low-power sensor devices have been developed
for long-distance communication, like TinyNode [11] and
Fleck-3 [8]. They provide long communication distance with
low data rates. For instance, TinyNode adopts the Semtech
XE1205 RF radio that increases the receiver sensitivity by
a built-in low-noise amplifier and a baseband amplifier.
TinyNode is able to achieve a theoretical communication
distance up to 1.8km by lowering the bit rate to 1.2kb/s.
While those long-distance devices provide the opportunity of
building a sparse sensor network across large areas, we find
the communication ranges may be significantly impaired in
practice because the high sensitivity of receivers for decod-
ing weak signals on the other hand makes decoding vulnera-
ble to the multi-path effect from surrounding obstacles, e.g.,
buildings, vehicles, water surface, etc. Our in-field mea-
surement demonstrates that the maximum communication
distance of TinyNode ranges from 230 meters to 960 meters
in different environments. Similar reduced communication
ranges have also been observed by P. Corke et al. in [8].

In this paper, we design a software-based long-distance
networking approach to provide DistanceLess Transmissions
(DLT) with rateless erasure codes. DLT encodes data into
rateless units and continuously adds redundancy by sending
more encoded units. It is able to gradually lower down
the effective data rate and thus significantly augment the
communication distance beyond the current hardware limit.
At the same time, the distanceless transmission is able to
best exploit the link capacity and automatically adjust to a
suitable effective bit rate for both near and far receivers.
In distanceless transmission style, DLT can make efficient
use of those conventionally unfavorable long-distance links.
Data transmission becomes distance oblivious and can easily
fit to potential receivers at different distances. As a result,
the network connectivity can be enriched and the network
diversity can be fully exploited.
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Figure 1: Locations of deployed wind sensors on and around
an urban reservoir in Singapore.

Translating the idea into a practical system, however,
entails a variety of challenges. Rateless codes are usually
designed for high-end devices and may incur infeasible de-
coding overhead for resource-constrained sensor nodes. For
one link transmission, the receiver should decode the packet
rapidly and inform the transmitter timely to terminate the
continuous transmission. We implement Luby Transform
(LT) code [35] on TinyNode by carefully addressing the
probelms of encoding efficiency and decoding delay. We
also propose a link layer protocol to coordinate the syn-
chronized rateless transmissions. When growing the per-link
transmissions to network-wide data forwarding, we devise
the Expected Distanceless Transmission Time (EDTT) met-
ric that evaluates the link quality with rateless transmissions
and best exploits the network diversity. EDTT can be easily
incorporated into the Collection Tree Protocol (CTP) [17] for
network data collection. We finally extend DLT to work with
low duty-cycled MACs, that has been the de facto sensor
network setting for energy conservation. Integration with
duty-cycled MACs and a sequence of optimization issues
were never considered in conventional rateless code design.
The final design of DLT is significantly optimized in fully
exploiting the network diversity. To the best of our knowl-
edge, DLT is the first distanceless networking design that
supports data collection in sparse sensor networks deployed
across large areas.

We implement and test DLT in a real-world application, in
which 12 wind sensors are deployed to cover a 2.5km*3.0km
urban reservoir in Singapore [9]. Extensive experiments are
performed and the results show that DLT improves the data
delivery reliability over the state-of-the-art data collection
protocols (e.g., CTP, ORW [24] and Seda [15]) by up to 26%,
shortens the packet latency by 55%, and reduces the energy
consumption by 41%.

The rest of this paper is organized as follows. The moti-
vation of DLT is presented in Section 2. The DLT design
and implementation are detailed in Section 3. Section 4
introduces the deployment and experiment results. Section 5
reviews related works and Section 6 concludes this paper.
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Figure 2: Maximum communication ranges.

2 Motivation
Need for long-distance low-power communications. In

many environment monitoring applications, such as forest
monitoring [33, 8], soil moisture measurement [44], ground
water quality monitoring [26], etc., sensors may be sparsely
deployed to cover a wide area. Long-distance communica-
tion helps to connect sensors far away from each other and
reduce unnecessary deployment of relay nodes. In our recent
project for wind measurement, we deploy 12 wind sensors in
a 2.5km*3.0km urban water reservoir that measure the wind
distribution over and around the water surface [9]. Figure 1
depicts the locations of the deployed wind sensors. The
distance between two nodes ranges from 300m to 1.2km. In
such a typical sparse sensor network, long-distance commu-
nication is desired, or extra sensor nodes have to be deployed
to ensure network connectivity.

It is viable to apply technologies, like WiMAX and cel-
lular communication, to achieve long-distance communica-
tions. However, the power consumption of WiMAX (about
200 mW) and cellular modules (typical 500 mW transmis-
sion power) is too high for typical sensor motes powered by
batteries (about 54 mW). In addition, extra data cost may be
incurred (e.g., more than 4500$ annual cost for the 12 wind
sensors using a cellular data plan). In this paper, we investi-
gate how the long-distance low-power radios could be used
to form a multi-hop network to interconnect the sparsely
deployed sensors. We does not consider other hardware
aided solutions, e.g., using high transmission power, special
hardware like high gain or directional antennas. Power con-
sumption is a major consideration. Excessively higher power
will be incurred to ensure communication quality over longer
distances. In many places, such high transmission power in
the ISM band is prohibited, e.g., the maximum transmission
power of 868MHz that TinyNode uses is limited to 25mW
(14dBm) for outdoor use in Singapore and Europe. On the
other hand, those solutions add additional hardware over-
head and impair the generality, e.g., most general MAC and
routing approaches are based on omnidirectional antennas
and cannot be applied on directional antennas.

Communication distance and network connectivity.
Some low-power sensor motes have been specifically devel-
oped for long-distance communication, e.g., TinyNode [11]
and Fleck-3 [8]. TinyNode offers 9 different data rates from
1.2 kb/s to 76.2 kb/s and 4 power levels from 0 dBm to 15
dBm with a step of 5 dBm. The receiving sensitivity could be
as high as -121 dBm at the 1.2 kb/s bit rate, which provides
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Figure 3: The network topology over packet-level links. The
number on each link indicates its PRR.

the longest communication distance, a theoretical range of
1.8km. The communication range, however, may severely
degrade in practice due to multi-path effect and interference.

We conduct a series of in-field measurements using
TinyNode in three representative environments: an open
field, an urban road and a lake. For each experiment, we
configure the transmitter to continuously send packets to the
receiver. We measure the packet reception of the receiver at
different communication distances. The packet size is set
to 76 bytes. Although we take TinyNode as a vehicle in
the measurements, we believe similar results may also apply
to other long-range radios, as they normally achieve long
communication distances through high receiver sensitivity
enabled by low bit rates.

Figure 2a depicts the measured average Packet Recep-
tion Rate (PRR) corresponding to different communication
distances at the highest bit rate with the minimum power
(76.2kb/s-0dBm) and the lowest bit rate with the maximum
power (1.2kb/s-15dBm) respectively. The maximum com-
munication distances of all other configurations are between
these two curves. In Figure 2a, we see that the communica-
tion range achieved in practice is much smaller than its the-
oretical value (i.e., 1.8 km). The measurement results reveal
that although a wide range of tunable configuration param-
eters (e.g., bit rates and transmission power) are provided,
TinyNode offers inadequate channel adaptation capability in
many practical situations.

Figure 3 presents the formed network topology when we
directly employ TinyNode to interconnect the 12 deployed
wind sensors shown in Figure 1. We measure PRR between
each transceiver pair operating with the highest transmission
power and the lowest bit rate, which produce the longest
communication distance. Figure 3 depicts all links with a
PRR higher than 20%, where W06 is the sink. Many links
in the network are disconnected and most connected links
suffer from high packet loss.

Although PRR decreases rapidly as the communication
distance increases, we find that the erroneous bits in majority
of corrupted packets are few. This observation inspires us to
extend the communication distance by fully leveraging the
correct bits contained in each received packet. We thus in-
vestigate the Byte Reception Rate (BRR)1, which measures

1We focus on the correctly received bytes rather than bits as in [30]
because bytes can better reflect the information available in partial packets.
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Figure 4: The network topology over byte-level links. The
number on each link indicates its BRR.

the correct bytes received by the receiver over the total bytes
transmitted by the transmitter. In Figure 2b, we measure
the BRR for different communication distances. The re-
sults demonstrate that significant increase of communication
range can be achieved with a relatively high BRR. When we
adopt the BRR metric to revisit the network connectivity, a
highly connected network topology with byte-level links can
be obtained, as Figure 4 depicts.

Solutions. To mitigate the distance limitation in sparse
networks, we leverage rateless codes to extend communi-
cation distance. Transmitted as a stream of encoded units,
rateless codes can automatically approach the data rate corre-
sponding to the channel quality. We can thus largely release
the distance constraints. The network diversity, measured by
the number of potential next-hop receivers available for each
node, can also be significantly enriched. To fully exploit
the network diversity that can be achieved in Figure 4, we
propose a DistanceLess Transmission (DLT) approach to
best adapt to different communication distances.

In DLT, a transmitter sends unlimited encoded rateless
blocks (each of several bytes in our implementation) and
different receivers can recover the original data by accumu-
lating sufficient correct blocks according to their own chan-
nel condition. DLT breaks the data transmissions into byte-
level block transmissions and can adapt the effective data
rate to the byte-level link qualities. The data transmission is
made distanceless, i.e., in a same data transmission, different
effective data rates can be achieved for receivers at different
communication distances. The network diversity as shown
in Figure 4 can thus be best exploited.

Challenges. To implement DLT in a practical system,
the following two major challenges need to be addressed.
(1) The current rateless codes need to be tailored to provide
link communications on resource-constrained sensor motes.
For instance, the decoding process needs to be accelerated to
enable timely feedback from receivers to transmitters. (2)
An appropriate link quality metric needs to be devised to
quantify the distanceless transmission gain on different links
and select routing paths for network wide data forwarding.
The duty-cycled MAC should also be carefully incorporated
for better energy efficiency.

3 DLT design
DLT provides reliable and efficient data collection across

sparse wireless sensor networks. At the link layer, DLT



leverages rateless codes to improve the transmission quality
over links of different communication distances. At the
network layer, DLT incorporates its link design into the
common routing stack of sensor networks in both full-active
and low duty-cycled mode based on a new link metric.
3.1 Rateless codes for sensor motes

Many light-weight rateless codes, e.g., LT code, Random
Linear (RL) code and Online code, encode data into rateless
units and automatically achieve a proper bit rate for a given
link. They are viable for low-profile wireless sensors. With
those rateless codes, nodes divide one packet into k blocks,
denoted as {B1, B2, · · · Bk}, which are used to generate
encoded rateless blocks, {Y1, Y2, · · ·}. For one rateless block,
a certain number of randomly selected original data blocks
are linearly combined. Each rateless block is attached with
an one-byte Cyclic Redundancy Check (CRC) checksum.
Once a node receives m (m≥k) clean rateless blocks that
pass the CRC checking, it can use the Gaussian Elimination
(GE) algorithm or the Belief Propagation (BP) algorithm to
recover the original packet.

Decoding efficiency of a block-based rateless code is
calculated as k/m, which measures how many additional
blocks (m−k) are required to recover the original packet. RL
code has the optimal decoding efficiency (100%), whereas
its decoding time is extraordinarily long, because it uses
modular multiplication with random numbers in a finite field
to linearly combine original blocks. LT and Online codes use
the light-weight exclusive disjunction (XOR) operations but
degrade the decoding efficiency. The performance of online
code is highly determined by complex parameter tuning [43].
On the contrary, LT code is robust and well balances be-
tween decoding efficiency and computation complexity. It
can recover the original packet from k + O(

√
k ln2(k/δ))

encoded blocks with a successful probability of 1−δ and an
average computational overhead of O(k ln(k/δ)) [35]. We
thus choose LT code in our design.

Encoded blocks in LT code are generated by the bitwise
modulo-2 sum of d original blocks that are randomly and
uniformly chosen from the k original blocks, where d =
1,2, . . . ,k. For the encoded block Yi,1 < i < ∞, the selec-
tion of degree d is determined by a probability distribution
ρ(d) = {p j,1 < j < k}, where p j is the probability that d(=
j) original blocks are selected to encode Yi. The decoding
efficiency of LT code depends on the degree distribution.
The default robust Soliton distribution in LT code is mainly
optimized for long packets containing thousands of blocks in
cellular or satellite communication. Its decoding efficiency
is low for the small packets in wireless sensor networks.
For instance, it requires 26.9 encoded blocks to recover a
packet of 16 original blocks. We thus implement the degree
distribution optimized in SYNAPSE [39], which reduces the
requested blocks to 17.9.
3.2 DLT link

We enable the distanceless link transmissions and address
the decoding issue to implement LT code on sensor motes.
3.2.1 Distanceless link coordination

With DLT, a transmitter encodes data into rateless blocks
and transmits an encoded stream. At a given time point,
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Figure 5: Parallel rateless reception and decoding.

the nodes with different distances to the transmitter may
receive different number of clean blocks. As the transmitter
keeps sending the encoded block stream, all receivers will
succeed in decoding by accumulating sufficient clean blocks.
For a single link transmission, after recovering a packet,
the receiver should inform the transmitter to terminate its
transmission and release the channel immediately.

As low-power wireless radio is half-duplex, we let the
transmitter send frames, where one frame contains multiple
blocks. Before transmitting the next frame, the transmitter
waits for the feedback (e.g., ACK or NAK) from a receiver
in a short time interval (e.g., 0.5ms). Upon receiving one
frame, if the decoding succeeds, the receiver replies with
an ACK to terminate the transmission; otherwise, it replies
with a NAK containing the number of missing blocks and
the transmitter sends another frame containing the requested
number of rateless blocks.

To enable rateless link transmission, the receiver needs to
timely feedback to the transmitter after successful decoding.
The BP algorithm is computationally lightweight. It however
imposes strict requirements on the degree of received clean
blocks, deteriorating the decoding efficiency. We choose the
GE algorithm, which can decode the packet successfully as
long as k linearly independent blocks are received. The com-
putational complexity of GE is relatively high, i.e., O(k3)
for decoding k original blocks, which may not satisfy the
timing requirement of link transmissions. We tackle the high
computational complexity issue of GE and propose a fast
decoding approach.
3.2.2 Fast decoding

To decode one packet using the GE algorithm, receivers
require the encoding coefficient matrix I used by the trans-
mitter for generating the rateless blocks. The matrix is a
binary matrix. The width of the matrix is equal to the
number of original blocks k and each column of the matrix
corresponds to one original block. Each row indicates how a
rateless block is encoded. The blocks whose corresponding
column is equal to 1 are XORed to calculate the encoded
block. In DLT, we let transmitters generate I using a random
number generator. Receivers can reproduce an identical
matrix using the same seed.

By knowing the coefficient matrix I, the GE algorithm
decodes a packet in two steps: triangularization and back-
ward substitution. They aim to obtain a triangular coefficient
matrix using linear operations of rows in I. If I has full
rank, the data packet can finally be recovered. However,
the GE algorithm is time consuming for low-profile sensor



Algorithm 1 Accumulative Gaussian Elimination.
1: Input: Yi: the new received block. R: rank of the coefficient matrix I.
2: Output: Decoding result (isSolved) and decoded original blocks.
3: Insert the coefficient vector of Yi to the jth of the coefficient matrix I;
4: j = R+1;
5: for n = j; n <= i; n++ do //Try another temporal blocks.
6: for m = 1; m <= j; m++ do //Triangularization
7: if I jm! = 1 then
8: I j=Im

⊕
I j; Yj=Ym

⊕
Yj;

9: end if
10: end for
11: if I j, j == 1 then //Triangularization successes.
12: for m = j; m > i; m−− do //Backward substitution
13: if I j,m == 1 && m! = j then
14: Im=Im

⊕
I j; Ym=Ym

⊕
Y j;

15: end if
16: R++;
17: end for
18: return checkCoefficientMatrixFullRank(I);
19: else//Triangularization fails. Use the previously received blocks.
20: I j=I j

⊕
In+1;Y j=Y j

⊕
Yn+1;

21: end if
22: end for
23: return False;

devices, e.g., it takes 1.2ms for TI MSP430 microcontroller
to decode a 64-byte packet composed of 8 blocks, which is
much longer than the waiting interval of 0.5ms.

We accelerate LT decoding based on two key observa-
tions. First, the decoding time of a frame is much less
than the receiving time on sensor motes, e.g., it takes 8ms
to receive a 76-byte frame with the bit rate of 76.2kb/s on
Semtech XE1205 radio and 1.2ms to decode the same frame
on TI MSP430 microcontroller. Second, before starting the
decoding process using the GE algorithm, the microcon-
troller has to wait until the whole frame is received. Thus,
we shorten the frame processing delay by paralleling the GE
decoding with the frame receiving. As illustrated in Figure 5,
nodes start updating the coefficient matrix as long as the
first two encoded blocks are received and perform the GE
decoding during the reception of next block.

3.2.3 Accumulative Gaussian elimination
We develop an Accumulative GE (AGE) algorithm to

parallelize the GE decoding with the frame receiving. Un-
like the existing incremental GE algorithms [3], which only
performs the triangularization incrementally, AGE strives
to finish both triangularization and backward substitution
before new blocks arrive. Algorithm 1 describes how a new
received block is added in AGE decoding accumulatively.
The key idea is to transform the top left submatrix in the
coefficient matrix into an identity submatrix step by step
using the GE algorithm as new blocks are accumulated grad-
ually. If a new block cannot be used immediately to extend
the submatrix, it will be stored temporarily and utilized later
when more blocks are received.

An example of AGE decoding is illustrated in Figure 6,
in which a packet can be decoded from 4 encoded blocks.
The receiver starts decoding when two blocks are received
(step a). It tries to convert the submatrix highlighted by the
dashed square into an identity matrix by switching the first
two rows (step b: triangularization) and replacing the first

0 1 0 1  1 1 0 0  1 0 0 1 
1 1 0 0  0 1 0 1  0 1 0 1 

a  b  c 
              

1 0 0 1  1 0 0 1  1 0 0 1 
0 1 0 1  0 1 0 1  0 1 0 1 
1 1 0 1  0 0 0 1  0 0 0 1 

d  e  f 
              

1 0 0 1  1 0 0 1  1 0 0 0 
0 1 0 1  0 1 0 1  0 1 0 0 
0 0 0 1  0 0 1 1  0 0 1 0 
1 1 1 1  0 0 0 1  0 0 0 1 

g  h  i 
 

Figure 6: An example of AGE decoding.

row with the XOR of the first two rows (step c: backward
substitution). When the third block is delivered from the
radio to the microcontroller, the receiver inserts it to the
third row (step d) and performs triangularization (step e).
However, this step fails and thus the receiver stores the
second block as a temporal block for future use without per-
forming backward substitution (step f). When the last block
is received, the original data can be decoded by eliminating
all “1” values in the last row by triangularization (step h) and
in the last column by backward substitution (step i).

With the AGE algorithm, both triangularization and back-
ward substitution are nearly completed prior to the reception
of the last block. The receiver only processes the coefficient
matrix for the last block to recover the original packet. The
decoding latency is thus significantly reduced from 1.2ms to
0.4ms and the receiver can promptly send a feedback to the
transmitter within an ACK waiting interval.
3.3 DLT networking

Traditional link quality metrics for packet routing, e.g.,
ETX, are not suitable for distanceless transmissions, because
they evaluate links based on the packet reception statistics.
DLT transmits fine-grained rateless blocks. The number
of blocks contained by each frame is dynamically adjusted
and the frame length is variable for different transmissions.
We therefore propose a tailored metric to evaluate the per-
link transmission quality, which can be seamlessly integrated
into CTP for a network-wide distanceless data collection.
We further propose a routing protocol to optimize the per-
formance in low duty-cycled sparse sensor networks with
limited network diversity.
3.3.1 Expected distanceless transmission time

BLock Reception Rate (BLRR). BLRR directly de-
scribes the channel loss in block-level transmissions. It is
the ratio between the clean blocks received by the receiver
and the total blocks sent by the transmitter. The BLRR for
a given block size (e.g., Lb), denoted as BLRRb, can be
measured directly based on data transmissions. The receiver
inserts a payload of one byte in its feedback message. For an
ACK, the one-byte payload presents the number of received
clean blocks; otherwise, it refers to the number of missing
blocks. Based on the information, the transmitter can cal-



culate its BLRR after each transmission. To minimize the
measurement jitter, we apply a weighted moving average to
obtain a relatively stable BLRR.

BLRRb = α∗BLRRnew
b +(1−α)∗BLRRold

b (1)

where α is a weighting factor and the setting of α is ex-
perimentally determined according the variation of wireless
channels. In our deployment, a weighting factor of 0.92 pro-
vides the best performance, which reveals that the channel in
our deployment field is highly dynamic.

BLRR cannot differentiate two links if their block sizes
are not the same. For instance, on a link of high byte
error rate, if a large block size is used, the BLRR is low;
otherwise, a small block size results in a higher BLRR.
Simple comparison between two BLRRs of different block
sizes cannot represent the actual channel condition. To best
accommodate to different channel conditions, however, we
must adjust block size dynamically (Section 3.4 describes the
block size adaptation algorithm) used in DLT. Therefore, we
propose Expected Distanceless Transmission Time (EDTT)
to evaluate the distanceless link transmissions.

Expected distanceless transmission time. EDTT aver-
ages the BLRRs of different block sizes. We denote the
length of an original data packet as Ldata. With rateless
transmissions, the data packet is divided into Ldata/Lb blocks
to generate unlimited rateless blocks. To decode the packet,
receivers need (Ldata/Lb) ∗ (mb/kb)/BLRRb rateless blocks,
where kb/mb is the decoding efficiency of LT code for kb
original blocks. For each rateless block, we add one-byte
CRC and thus (Lb + 1) ∗ 8 bits need to be transmitted. The
time needed to complete the transmission of all those blocks,
called Distanceless Transmission Time (DTT), can be calcu-
lated as:

DT Tb =
Ldata ∗mb ∗ (Lb +1)∗8

Lb ∗ kb ∗BLRRb ∗R
. (2)

where R is the transmission bit rate. If we denote the set of
all possible block sizes as L , EDTT can be calculated as:

EDT T = ∑b∈L Pb ∗DT Tb, (3)

where Pb is the probability to use bth block size and DT Tb
is its transmission time. We set Pb as the usage frequency of
each block size in last M transmissions. In our deployment,
M is set to 100. If one block size is not used in the past M
transmissions, its usage frequency is equal to 0. Based on
Equation (2) and (3), we can calculate the EDTT for each
link by measuring its BLRR.

Integrating DLT with CTP. With EDTT, we integrate
DLT with the de facto routing protocol in wireless sensor
networks, Collection Tree Protocol (CTP), with the minimal
modification to the existing protocol stack. We replace ETX
in the CTP implementation in TinyOS by EDTT. Each node
selects the path with the minimum cumulative EDTT to
the sink to transmit packets. The per-link EDTT value is
included in each transmitted frame. If a node receives a
packet yielding a lower cumulative EDTT value to the sink,
it updates its routing table. EDTT of an individual link is
updated by data transmissions and proactive probes. Beacon

packets are transmitted periodically with a pre-defined pay-
load. The beacon transmission period is adjusted according
to the Trickle algorithm [27]. Upon receiving a beacon,
the erroneous bits are known and we thus can calculate the
BLRR for each block size. By doing so, we obtain the EDTT
for all block sizes using one beacon.
3.3.2 Low duty-cycled networks

In wireless sensor networks, nodes are usually duty-
cycled to prolong the network lifetime. To provide a general
and comprehensive design for data collection in environmen-
tal monitoring applications, we extend the DLT design to
low duty-cycled mode. Low-power listening (LPL) has been
widely adopted to schedule two asynchronous transceivers
in low duty-cycled sensor networks. With the default im-
plementation of LPL in TinyOS, BoX-MAC [36], the trans-
mitter sends a long preamble of data packets. When a node
wakes up, it first checks the channel for a short duration.
It attempts to receive the packet if the channel is sensed
to be busy; otherwise, it goes back to sleep again. We
introduce the DLT design based on LPL for duty-cycled
sensor networks. As a matter of fact, other types of duty
cycling schemes, e.g., receiver-initiated A-MAC [13], can
also be similarly integrated into DLT.

LPL has been integrated into many existing routing pro-
tocols, like CTP and ORW. In CTP with LPL enabled, nodes
transmit a long preamble until their target receiver wakes
up. ORW reduces the latency and energy consumption by
enabling opportunistic routing of the first waken forwarder.
Nodes check whether they can make progress for a packet
delivery by considering both their cumulative ETX distance
to the sink and the number of their potential forwarders.
More potential forwarders imply that the per-hop transmis-
sion latency will be low.

The existing protocols, however, mainly focus on dense
sensor networks with rich network diversity. By taking
into account the unique features of sparse sensor networks
(e.g., extremely lossy links and low network diversity), we
devise several optimization schemes to better incorporate the
distanceless transmissions in low duty-cycled mode. Due
to the low network diversity in sparse sensor networks, we
need to make full usage of each potential transmission op-
portunity. Nodes with DLT maintain an EDTT parameter for
each potential receiver and choose the minimum cumulative
EDTT as their EDTT. When a node wakes up and hears
a preamble, it decodes the header of a frame and verifies
whether it should forward the packet. For verification, the
node compares its EDTT with the transmitter’s, which is
contained in the frame header of each transmission. If its
EDTT is smaller than the transmitter’s, it becomes a for-
warder for that transmitter.

In DLT, instead of repeating the same data packet in
the preamble, nodes transmit a stream of rateless frames as
preamble. Each frame contains different rateless blocks such
that diverse frames are continuously pumped out. Potential
forwarders can recover the data packet by receiving sufficient
rateless blocks. For multiple receivers, the optimal frame
length is different. We configure the length of preamble
frames according to the channel condition to the nearest for-
warder since it normally requires the least amount of rateless
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Figure 7: Architecture of DLT.

blocks. When a receiver far away from the transmitter wakes
up first and verifies that it is eligible to relay this packet,
it sends a NAK with the number of missing blocks. Upon
receiving the NAK, the transmitter adjusts the frame length
and transmits proper number of rateless blocks to adapt to
the wireless channel condition of the respective forwarder.
The number of blocks contained in next frame is adjusted
based on both the number of clean blocks already received
by the forwarder (Nrec) and the channel quality, as expressed
in the following:

Nb =
(Ndata−Nrec)∗mb

BLRRb ∗ kb
(4)

In sparse sensor networks, each node only possesses a few
of potential forwarders. It is rare that multiple forwarders
simultaneously succeed in decoding and their feedbacks col-
lide. To handle this problem, the transmitter transmits frames
with a default frame length after the ACK waiting timer
expires. When a forwarder receives a frame for the decoded
data packet, it transmits an ACK with 1/2 probability to
migrate potential collisions.
3.4 Implementation details

We implement DLT in TinyOS. We introduce the archi-
tecture of DLT and the techniques which enable the DLT
implementation.

DLT architecture. Figure 7 depicts the architecture of
DLT. We implement four major modules compatible to the
existing 802.15.4 networking stack with the minimal modi-
fications to current protocol components in TinyOS.

To transmit a data packet, the routing module adds a
header before the application payload, including EDTT,
source address and sequence number. The processed data
packet is then delivered to the logical link control module
to generate rateless blocks and assemble frames. The op-
timization of transmission parameters, e.g., block size and
frame length, are also performed in the logical link control
module. Frames are finally passed to the existing MAC layer
for transmissions using LPL and CSMA/CA.

For receiving, the PHY layer loads the received bytes
in a buffer after detecting a preamble. The fast decoding
module retrieves blocks from the buffer and passes them to
the logical link control to start decoding. Nodes maintain
a forwarding cost for each neighbor in the routing module.
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Figure 8: Frame format in DLT.

When a decoded packet is passed to the routing module,
the node either relays the packet to the CTP parent or the
first waken neighbor with a smaller forwarding cost. The
link quality metric is updated periodically with the default
mechanism in the network layer.

Frame format. The frame format in DLT is depicted
in Figure 8. “Frame Length”, i.e., the number of bytes
contained in the frame. “Frame Control” contains control
information, e.g., two bits in this field indicate the frame
type; one bit describes whether an ACK is required; and the
rest are reserved for future extension. “Sequence Number”
is the original data packet index and “Src Address” is the
ID of the node which generates this data packet. Different
frames encoded from the same data packet are identified by
their “Frame ID”. The ID is set to 1 for the first frame and
is increased gradually for the following frames. The EDTT
of the transmitter is used to verify forwarding before the
decoding of MAC payload. If the node is not a forwarder
to the current transmission, it will discard the received frame
without decoding.

Block size adaptation. Given the channel condition, dif-
ferent block sizes Lb may result in different BLRRs. A small
block size can preserve correct bytes with higher granularity,
whereas it requires more CRC overhead. In DLT, block
size in each frame is adapted dynamically according to the
current channel condition. We propose a simple heuristic
algorithm to dynamically adapt the block size. We adapt
the block size according to the variation of BLRR. When
the BLRR reaches an upper bound τh, it indicates that the
number of error bytes in the received frame is low and we
can increase the block size to reduce the CRC overhead.
When the BLRR decreases to a lower bound τl , there are
too many erroneous blocks and the block size needs to be
reduced. In our implementation, τh and τl are set to 91% and
72% respectively, and three levels of block size, i.e., 4, 8 and
16 bytes, are used. The block size of a frame is indicated by
2 bits in its “Frame Control” field of the MAC header.

Predictable encoding coefficient matrix. To reduce the
transmission overhead, we do not transmit the random num-
ber generator seed used for encoding and decoding along
with the data packet. Instead, a fix seed is used. To generate
the coefficient matrix I for decoding, the corresponding row
of one received block can be identified by “Frame ID” and
the offset of the block in that frame. If the CRC checking of
a block fails, it will be discarded and its corresponding row
will be deleted from I. If the transmitter does not receive
a feedback from any receivers in an ACK waiting duration,
it transmits another frame with the same number of rateless
blocks in the previous frame. The new frame contains the



Table 1: The performance of implemented LT code on
TinyNode using the AGE decoding algorithm.

Number of blocks 4 8 16

Decoding time
GE 0.9 2.4 10.1
IGE 0.5 0.8 3.4

(ms) AGE 0.4 0.4 1.4

Overhead
Robust Soliton 2.99 6.03 10.87

(blocks) SYNAPSE+GE 1.81 1.96 1.83
SYNAPSE+AGE 1.7 1.91 1.9

RAM (kB) 4.4 4.5 5.0

next piece of encoded blocks and an increased frame ID. It
can thus bring novel information to the receiver in case that
the feedback of the previous frame was lost. When a node
receives a frame ID increased by j, where j ≥ 2, it identifies
the row of the i-th block in this frame as Nblk + b× j + i,
where Nblk is the number of blocks in the last correctly
received frame and b is the number of blocks contained in
the current frame.

LT code on sensor motes. Table 1 tabulates the decoding
efficiency, decoding time, and memory occupancy measured
on TinyNode (TI MSP430 microcontroller) for different k
values. The results reveal that the proposed AGE algorithm
can significantly reduce the decoding time without impacting
the decoding efficiency. The decoding time is measured from
the last block received until the decoding completed under
parallel decoding and receiving.

To fully pipeline the frame receiving and decoding, the
total decoding time should be less than the receiving time.
However, the decoding time is 30.5ms, which is much larger
than the time (i.e., 8 ms) to transmit a packet of 76 bytes at
76.2kb/s bit rate on TinyNode. To accelerate the decoding,
we find that the random number generation used to repro-
duce the encoding coefficient matrix is time consuming in
TinyOS. We trade RAM memory for encoding and decoding
speed. Instead of generating the coefficient matrix every time
a frame is received, we fix the random number generator seed
and store the coefficient matrix in RAM. For a 64-byte frame
of 8 original blocks, we save a matrix of 160 rows for 160
encoded blocks (20 times larger than the number of original
blocks). It is sufficient for some extremely lossy links with
a block error rate around 94% (150/160), but only occupies
160 bytes of RAM. By doing so, we can reduce the decoding
time from 31 ms to 2.4 ms.

With our proposed AGE algorithm, the decoding time can
be finally reduced to 0.4ms. From Table 1, we also see that
the decoding overhead of our AGE algorithm is the same
with the traditional GE algorithms. Furthermore, the RAM
cost shown in Table 1 is the footprint of our implementation
of DLT including specifications of all protocol layers but not
just AGE decoding. The memory cost is well controlled and
can be supported by current sensor motes, e.g., TinyNode
and TelosB, which are composed of TI MSP430 microcon-
troller possessing a RAM memory of 10KB.
4 Evaluation

We evaluate DLT and compare it with other data collec-
tion protocols on our wind measurement sensor network.
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Figure 9: Wind measurement sensors installed on land (a)
and floating on the water surface (b); Electronic devices in
a weatherproof box (c); TinyNode with an omnidirectional
antenna extended outside the box (d).

4.1 Deployment and experimental setting
In our application, 12 wind sensors are installed in Ma-

rina Reservoir of Singapore (a typical urban water field of
2.5km∗3.0km), as depicted in Figure 1, to measure the wind
distribution on the water surface. The sensor locations have
already been optimized by a sensor placement approach [9].
The average line of sight distance between two sensors in the
network is 720m. The maximum distance is 1000m and the
minimum distance is 300m.

Figure 9 presents the wind measurement sensors, includ-
ing sensors installed on the land and floating on the water
surface. The wind monitor model 05305L of R.M. YOUNG
is used to measure the wind direction and speed. The
OS5000 3-axis digital compass from OceanServer provides
the direction offset of the floating platform. With an early
version of the data collection system, each sensor is equipped
with a data logger to record the sensor data and send the
data back to our server via cellular network. At present,
TinyNode retrieves the sensor readings from the anemometer
via its analog-to-digital converter and a multi-hop network
is built using 12 TinyNode sensor motes to collect sensor
data. The data logger is used to record the system debugging
information, including data generation, packet transmission
and receiving. Solar panels are used to harvest energy, which
is stored in a rechargeable battery and further used to power
all electronic devices. The energy harvested by the solar
panel provides a power budget of ∼55.2 Wh/day, where the
wind sensor and data logger consume ∼51.9 Wh/day, leav-
ing ∼3Wh/day to the communication module. We employ
duty-cycled DLT with such limited power budget.



Besides energy efficiency, the data collection is required
to be reliable and fast. The sensor readings are processed to
generate the distribution of wind stress on the water surface.
Data loss from any sensor nodes will impair the accuracy of
the derived wind distribution. Furthermore, the wind distri-
bution is used as input to study the water hydrodynamics and
water quality in the entire reservoir with a 3-D limnological
model [9]. If problems arise, special physical or chemical
treatments will be taken, e.g., draining the water through a
barrage, starting the bubble-plume system to improve water
mixing, or adding algaecide to control algal blooms. As the
calculation of ecological model is time consuming (about 2-
3 min), to enable timely treatment, the data collection system
is required to provide real-time data monitoring, at least
faster than the ecological calculation.

In our experiment, one wind data sample is described by 4
bytes (2 bytes for wind direction and 2 bytes for wind speed).
Each sample is associated with a time stamp of 4 bytes. Wind
sensors make a measurement every 10s and send 6 samples
together to the sink every minute. With a 8-byte network
layer header (same as CTP) and a 8-byte field describing
the status of physical devices, a data link layer payload is
64 bytes. The total packet length is 76 bytes, including 6-
byte PHY layer header and 6-byte frame header. In our
implementation, the data link layer payload of 64 bytes is
encoded into rateless blocks by LT code. The block size
could be 4, 8 and 16 bytes, corresponding to 16, 8 and 4
original blocks in one data packet.
4.2 Methodology

We compare the performance of DLT with the following
benchmark protocols.

CTP [17] is the de facto routing protocol for sensor net-
works. We run CTP with BoX-MAC [36], the default low-
power listening MAC protocol in TinyOS. To transmit a data
packet, the transmitter sends a long preamble until the target
receiver wakes up. The preamble is a series of data packets
separated by an ACK waiting interval.

ORW [24] is the most recent routing protocol designed for
low duty-cycled sensor networks following the opportunistic
principle. It uses Expected Duty Cycled wakeups (EDC) to
control the size of forwarder set and adds a weight in EDC to
reflect forwarding cost. The weight parameter is set to 0.1,
the best setting reported in [24].

Seda [15] is a block-level link transmission method. It
divides one packet into blocks, each of which is associated
with a CRC and a sequence number. When a node receives a
corrupted packet, it replies the transmitter with the sequence
number of erroneous blocks and the transmitter retransmits
those blocks. As Seda outperforms other Forward Error
Correction (FEC) and Automatic Repeat-reQuest (ARQ)
methods in sensor networks [15], we do not compare DLT
with them individually. In this experiment, we integrate
Seda with ORW (as ORW generally outperforms CTP) for
the performance comparison.

Metrics. The main task of DLT is to collect data in sparse
sensor networks reliably and efficiently. We concern the
following 3 metrics for the performance evaluation.

Data yield is the ratio between the amount of data packets
received at the sink and the total amount of data packets

Table 2: Performance (PRR, BRR and BER) of two links
with different communication distances and data rates.

Rate (kb/s)
W01-W04 (550m) W01-W06 (1000m)

PRR BRR BER PRR BRR BER
76.2 0.25 0.46 0.07 0.04 0.15 0.11
1.2 0.43 0.61 0.05 0.09 0.23 0.07

generated by all sensors in the network. In the experiments,
packets may be lost when 1) buffer overflows due to network
congestion, or 2) continuous failures after the maximum
number of channel access (macMaxCSMABackoffs) or trans-
mission attempts (macMaxFrameRetries). As the default
setting in IEEE 802.15.4 standard, macMaxCSMABackoffs
and macMaxFrameRetries are set to 4 and 3 respectively.

End-to-end latency is measured from the time when the
original source node generates a data packet to the time when
the packet is received by the sink. In our wind measurement
sensor network, sensor nodes maintain a 2-packet buffer for
each neighbor. A node must drop the oldest packets from one
neighbor if more than 2 packets are in the respective buffer.

Energy efficiency is measured by duty cycle, i.e., the
portion of time when the radio is on. Duty cycle is a good
proxy of energy consumption for wireless sensors, since the
two main energy-consuming components on sensor motes
(i.e., microcontroller and radio) have similar work schedule
and the radio consumes similar levels of energy while trans-
mitting and receiving.
4.3 Results

We show the experiment results at both link level and
network level. We first focus on the periodical data collection
and consider another flexible traffic pattern later.
4.3.1 Single link

Using the in-field measurements on several single links,
we study the performance of different link-transmission ap-
proaches and the proposed block size adaptation algorithm.

In-field measurements. Table 2 presents three link-level
performance metrics (PRR, BRR and BER) measured at
W04 and W06 when W01 is transmitting at different data
rates. The pairs of W01-W04 and W01-W06 represent links
with short (around 550m) and long (around 1000m) commu-
nication ranges, respectively. PRR and BRR are calculated
based on all transmitted packets. BER is the byte error rate
of all received packets, not including the lost packets.

In Table 2, the BRRs of all links are much higher than
the relative PRRs and the BER in the corrupted packets is
low. The results confirm to our observation in Section 2 that
the bandwidth utilization in sparse sensor networks can be
significantly improved and the long communication distance
can also be achieved if we can efficiently enable byte-level
transmissions. Although both PRR and BRR increase for the
long-distance link to W06 when the bit rate is reduced, the
highest bit rate (76.2kb/s) still offers the largest throughput
(PRR*Rate), which is probably due to the combined effect
of interference and signal attenuation. We set the bit rate of
all approaches to 76.2kb/s during the experiments.

Block size adaptation. Table 3 presents the goodput
achieved by different block sizes for the packet traces col-



Table 3: Goodput (kb/s) achieved by different block sizes.

`````````Links
Block size (byte) 4 8 16 Optimal Adapt

W01->W04 52.5 56.7 57.9 59.4 58.8
W01->W06 41.8 40.8 36.5 44.9 43.4

lected on two links. The goodput of a received frame with
block size Lb can be calculated as:

Si =
Ncleanblk ∗Lb

Ntotalblk ∗ (Lb +1)
∗R (5)

where R is the bit rate. Ncleanblk and Ntotalblk represent the
number of correctly received blocks and the total number
of blocks in one packet, respectively. We calculate the
goodput achieved by several fixed block sizes for each packet
in the traces. The goodput of optimal adaptation is the
average goodput calculated by the best block size of each
packet. From Table 3, we see that one fixed block size is
not sufficient for all links. For the short link from W01 to
W04, a large block size is preferred; the other link of long
communication distance, however, works best with a small
block size due to more erroneous bytes in the traces. In
addition, even for one single link, the block size should be
adapted according to the channel dynamics. The goodput
achieved by the proposed adaptation algorithm in Table 3
demonstrates that our heuristic algorithm captures the chan-
nel variation and approaches the optimal solution. We will
show next that the 1-byte CRC overhead of each block is
much smaller than the substantial gain derived from rateless
transmissions and block size adaptation.

Goodput on single link. Figure 10 depicts the CDF
of goodput achieved by ARQ, Seda and DLT on the long-
distance link from W01 to W06. We measure the goodput
that all approaches can achieve to transmit 100 packet traces,
considering CRC overhead, packet retransmission, CSMA-
based multiple access overhead and ACK loss. Seda and
DLT-8 use a fixed block size of 8 bytes, and DLT enables
the proposed block size adaptation algorithm. The results
in Figure 10 show that Seda improves the average good-
put of ARQ by 1.4X via block-level retransmissions and
DLT achieves a goodput improvement of 2.1X over ARQ
through distanceless transmissions. If the proposed block
size adaptation algorithm is enabled, the goodput gain could
be further increased to 2.3X. Although Seda provides block
level transmissions, DLT possesses two unique advantages.
First, DLT proactively adapts to the wireless channels by
transmitting proper number of encoded blocks before each
transmission; however, Seda can only recover the corrupted
packet by passively retransmitting the erroneous blocks.
Second, the performance of Seda highly relies on the correct
reception of feedback packets. In case of ACK loss, Seda
has to retransmit the data packet, whereas DLT only needs to
transmit more rateless blocks. New blocks can be combined
with the previous blocks to recover the original data. In our
deployment, 10% ACK loss is observed. The link asymme-
try confirms to the experiments on IEEE 802.15.4 links [41].
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Figure 10: Link-level goodput of different approaches.

4.3.2 Network Performance
In this section, we run the benchmark approaches one by

one on the deployed sensor network. Each experiment lasts
for 2 hours. In our application, each node sends its data to
the sink (W06) every minute. The sink is always in active
mode and is connected to internet directly. All the results
presented in Figure 11 are based on the packet generation
rate of 1 min. We evaluate the performance of all approaches
with different wakeup intervals. In low duty-cycled sensor
networks, wakeup interval is a crucial parameter to achieve
the best network performance given a fixed traffic load.

The results reveal that DLT outperforms the other ap-
proaches for all wakeup intervals and it can provide high per-
formance for a large range of wakeup intervals. On average,
DLT achieves substantial performance improvement over
CTP, ORW, and ORW-Seda. In particular, DLT increases
the data yield of CTP, ORW and ORW-Seda by 26%, 15%
and 10%, respectively. It reduces the packet latency of CTP,
ORW and ORW-Seda by 55%, 49% and 44%. DLT also
improves the energy efficiency of CTP, ORW and ORW-Seda
by 41%, 31% and 27%.

Data yield. Figure 11a shows the data yield of different
protocols under various wakeup intervals. Compared with
benchmark protocols, DLT produces less traffic loads in
the network, since it shortens the preamble transmission by
utilizing the opportunistic forwarding from distant neighbors
and accelerates the data transmissions by better adapting to
the dynamic wireless channels. It encounters less collision
and congestion, and thus provides higher data yield.

When the wakeup interval is small, it is highly possible
that multiple nodes are awake at the same time. Data yields
are low due to the high probability of collisions. Many pack-
ets are dropped after the maximum number of transmission
attempts. Especially for sparse sensor networks, traditional
communication schemes have to transmit a packet many
times when the channel is lossy. The transmission of one
data packet may be longer than one wakeup interval. As
a result, it will likely collide with the transmissions from
other neighbors in the next wakeup interval. DLT mitigates
such problems since it shortens the link transmissions and
reduces the probability of lengthy packet transmissions. As
the wakeup interval increases, the data yield of DLT becomes
stable. Compared with the other approaches, DLT provides
high performance for a wider range of wakeup intervals. For
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Figure 11: Overall performance of different wakeup intervals.

large wakeup intervals, data yields decrease due to traffic
congestion. Long preambles occupy the channel for a long
duration, which reduces the transmission chance of other
nodes. Moreover, they are susceptible to collisions.

Data latency. Figure 11b presents the average end-to-end
latency of data packets. The latency augments as the wakeup
interval increases, as long preamble needs to be transmit
before the forwarder wakes up. However, compared with
the benchmark protocols, DLT has a much slower increasing
speed, since it achieves short data frame transmissions and
benefits more from the distant forwarders enabled by dis-
tanceless transmissions.

When the wakeup interval is large, the latency of DLT is
even less than one wakeup interval. In the multi-hop net-
work, latency is reduced by opportunistic forwarding. The
nodes close to the sink forward the packets from other nodes
if they wake up earlier than the default forwarder, e.g., the
node selected by CTP. Moreover, even without opportunistic
forwarding, it is possible that the forwarders along a packet
delivery path wake up sequentially. Since the distanceless
link transmission of DLT is short and optimized, the packet
has a high probability to be relayed sequentially without
missing the wakeup of any forwarders. The latency differ-
ence between CTP and ORW is small, because opportunistic
forwarding is rare if long-distance links are not utilized.

Energy consumption. Figure 11c depicts the duty cycles
achieved by different protocols. Lower duty cycle indicates
higher energy efficiency. DLT can achieve the best energy
efficiency for most wakeup intervals. When a small wakeup
interval is used, the energy consumption is high due to more
collisions and more CSMA-based multiple access overhead.
DLT transmits the packet with much less attempts attributed
to its optimal utilization of channel bandwidth. For a large
wakeup interval, more energy is consumed by the transmis-
sion of long preamble packets. Since DLT leverages better
the distant forwarders which may wake up earlier than the
default forwarder, it enables shorter preamble transmissions
and thus smaller probability of collisions.
4.3.3 Performance per Node

The experiments in this section are conducted with a
wakeup interval of 2s which enables the best performance
of CTP and ORW. Figure 12 demonstrates the performance

of each node in the network except the sink, which has
direct internet access. From the results, we see that DLT
can improve the reliability and efficiency of all the nodes
regardless of their location in the network. Compared with
the other approaches, the gain of DLT mainly comes from
two parts: better utilizing wireless channel bandwidth and
fully exploiting the enriched network diversity enabled by
distanceless transmissions.

Data yield. The data yield of a node is the ratio between
the amount of data packets received by the sink from that
node and the total amount of data packets generated by that
node. Relaying packets are not considered in the per-node
data yield. As shown in Figure 12a, the data yield of CTP for
some distant nodes, e.g., W02 and W10, is quite low, because
they only possess one forwarder and their data packets have
to pass through a long path composed of lossy links. ORW
and ORW-Seda improve the data yield by employing multi-
ple forwarders and DLT can achieve further improvement by
proactive adaptation to the wireless channels of all potential
forwarders including the distant ones.

Data latency. Figure 12b examines the average latency
of packets transmitted from different nodes. Similar to data
yield, packet latency of the nodes far away from the sink
is large since the packets need to pass through a long path
to reach the sink. DLT can accelerate this process by best
leveraging distant receivers over extremely lossy links. For
the one-hop neighbors of the sink (i.e., the nodes possessing
a direct connection with W06 in Figure 3), DLT reduces
their packet delivery latency by the efficient distanceless
transmissions. The latency of W11 and W12 is slightly
higher than that of W05, as their packets may be delayed
when they are relaying the traffic from other nodes.

Energy consumption. Figure 12c shows the duty cycle
of each node with different protocols. The energy consump-
tion of some relaying nodes, like W08, W11 and W12, is
high since they need to transmit both their own packets and
the relayed packets for other nodes. DLT can improve the
energy efficiency of these nodes by its elaborate link layer
design to achieve reliable transmission of long communi-
cation distance. For instance, when W08 is transmitting to
W11, if W06 is receiving data from W12 at the same time,
the data transmission between W08 and W11 will be im-
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Figure 12: Overall performance per node.

paired by the ACK packet from W06 to W12. Attributable to
its block-level distanceless transmissions, DLT can tolerate
such interference by further transmitting a small number of
encoded blocks.
4.3.4 Overhead

Figure 13 presents the overhead of DLT introduced to
each node. We separate the decoding overhead and com-
munication overhead from the data transmissions. The com-
munication overhead includes the time spent on ACK trans-
missions and CSMA channel access. The results show that
DLT spends most of its active time for data transmissions.
The decoding overhead is negligible compared with the data
transmission or communication overhead. The decoding
time of DLT is about 0.4ms (for 8 original blocks) which is
much smaller than the duration of data transmission (8 ms for
a data packet of 8 original blocks). The small MAC header
in DLT imposes negligible overhead. However, in sparse
sensor networks, due to the impact of surrounding buildings,
the hidden terminal problem is more severe than that of
dense sensor networks, which increases the communication
overhead. DLT minimizes the communication overhead by
increasing the probability of successful transmission using
distanceless transmissions.
4.3.5 Robustness

We examine the robustness of each approach by inserting
outages in the network. Every 30 min in a 120-min exper-
iment, we disable a randomly chosen node for 10 min. To
compare the performance of all approaches, the sequence
of the selected nodes is the same for the experiments of
all approaches. Figure 14 demonstrates the capacity of
each approach adapting to the outages. The results of each
time point in Figure 14 is the smoothed data with a 15-min
moving average window. During the first outage from 30min
to 40min, W11 is disabled. The data yield of all approaches
decreases, since W11 connects the subnetwork, consisting
of W02, W07 and W08, to the sink W06. The energy
consumption of all approaches is increased because W08
spends much energy to send data to W11. In the last two
outages, W09 and W04 are disabled respectively. We can see
from Figure 14 that the data yield of DLT is reduced slightly
whereas the performance of the other approaches degrade
sharply. In those two cases, DLT can fully leverage the long-
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Figure 13: Overhead breakdown of DLT.

distance links to bypass the disabled nodes; however, the
other approaches react slowly and cannot fully utilize the
wireless channels based on packet-level retransmissions or
simple block-level retransmissions.

4.3.6 Traffic patterns
In the above experiments, all nodes in the network send

their data to the sink periodically. Besides such a pre-fixed
traffic pattern, we also conducted some experiments to eval-
uate the performance of DLT for event-driven monitoring.
Sensor nodes only send their data back to the sink when an
interesting event occurs. We assume that the event effect
is limited (e.g., a sudden change of wind direction) and
can only be detected by one or two sensors. To evaluate
the performance of DLT in such a flexible traffic pattern,
each node in the deployed sensor network generates a packet
randomly and independently in a given period. The wakeup
interval of each node is set to 2s.

Table 4 presents the performance of DLT for different
Event Generation Rates (EGR), which is the average number
of events generated by each node every minute. For each
EGR, we measure the performance of DLT in an experiment
of 2 hours. From the experiment results in Table 4, we see
that DLT can reliably send the event information to the sink
in short time with small energy consumption for most EGRs.
The reliability of data delivery is high for all EGRs lower
than 2/min. When the EGR is 1/min, the performance of



Figure 14: Performance under outage. The gray shadow
indicates the duration when a node is disabled. The sequence
of the disabled nodes is W11, W09 and W04.

DLT is even better than the periodical data collection pattern.
As the events generated by all nodes are independent in
the event-driven traffic pattern, fewer nodes transmit at the
same time, and the probability of collision and congestion is
smaller than the periodical data collection pattern. When the
EGR is 5/min, more collisions and congestions are caused by
the heavy traffic. As a result, the reliability becomes lower;
besides, the latency and energy consumption increase.

5 Related works
Applications. In the last decade, a large number of sensor

networks [40, 25, 22, 21, 7, 23, 1, 28] have been deployed
for various applications, such as shooter detection, agricul-
ture, healthcare and building automation. Besides, many
large scale systems with hundreds of nodes [14, 20, 29, 33]
have been developed, like multi-target tracking, military
surveillance, temperature measurement and forest monitor-
ing. TinyNode has been used in many projects for envi-
ronmental monitoring, such as SensorScope [2] and Per-
maSense [42]. All the above systems are, however, densely
deployed at scale, which requires large number of sensors
and heavy maintenance due to network failures or environ-
ment dynamics [32]. The only deployment of sparse sensor
networks, to the best of our knowledge, is a system of 9
Fleck-3 monitoring the salinity level of underground water
with a mean communication distance of 800m [26]. While it
is a practical deployment, its delivery rate is low, about 64%.

Rateless codes. Strider [19] and Spinal code [38] are
the most recent rateless codes designed for Gaussian chan-
nels; they nevertheless cannot be implemented on low-power
wireless devices due to the high computational complexity.
The digital fountain approach conception is first introduced
in [5]. LT code [35] enables rateless transmission of encoded
blocks by XOR operations and an elegant design of the

Table 4: Performance of the event-driven traffic pattern with
different event generation rates.

`````````EGR (per min)
Performance Yield Latency Energy consumption

0.1 99.4% 1.7s 0.65%
0.5 99.4% 1.7s 1.2%
1 99.3% 1.9s 2.7%
2 96.6% 2.8s 6.5%
5 75.3% 7.9s 26.7%

coding scheme. It is used for remote reprogramming in
sensor networks [39] at packet-level. LT-W [34] improves
the decoding efficiency by Wiedemann Solver, whereas it
is difficult to be parallelized. MT-Deluge [16] employs
multiple threads in TinyOS to provide concurrent operations
of coding and reception. RTOC [43] adopts Online code
to improve transmission reliability. The performance of
online code is highly determined by parameter tuning and
the evaluation in [43] is only based on simulations.

Partial packet recovery. FEC approaches and hybrid
ARQ can harness the correct bits in corrupted packets,
e.g., ReedSolomon code used in ZipTx [30] to recover
partial packets in WLANs. However, the existing ap-
proaches mainly focus on the error correction over well-
established links and require accurate channel estimation to
gauge proper redundancy to compensate for the bit error,
which is difficult in sparse sensor networks. Even worse,
if sensor nodes are duty-cycled, it is more challenging to
achieve accurate channel estimation. DLT automatically
approaches the capacity of different links. The block-level
data link protocol, Seda [15], is not efficient because it needs
to retransmit the exact erroneous blocks and cannot add pro-
tection before transmissions. SpaC [10] combines multiple
corrupted packets to recover the original data, whereas it
does not proactively adapt to channel loss.

Routing in sensor networks. Dozer [4] and Koala [37]
collect sensor data through TDMA-based scheduling on a
tree topology for delay-insensitive applications. They, how-
ever, are not suitable for sparse sensor networks with dy-
namic transmission times. DSF [18] improves the reliability
and latency of data forwarding by transmitting to multiple
forwarding nodes. CBF [6] builds a forwarder cluster to
enable opportunistic routing in sensor networks. ORW [24]
incorporates opportunistic routing in low duty-cycle sen-
sor networks to reduce latency and energy consumption.
DOF [31] finds the duplicate problem is severe in ORW
when the traffic load is high. ORLP [12] extends ORW to
low-power IPv6 networks.

6 Conclusions
This paper presents DLT, a low-power networking ap-

proach for sparse wireless sensor networks at large-scale.
DLT expands the communication range of sensor motes and
fully explores link capability by continuously transmitting
rateless blocks. The network diversity can thus be enriched.
We propose a link layer protocol to support distanceless link
transmission, and tackle many technical challenges during
the implementation of rateless codes on sensor motes. We



further propose a tailored metric EDTT for efficient data
collection. EDTT can be directly integrated with CTP for
network-wide data collection and further extended to the data
collection in duty-cycled sensor networks. We evaluate the
performance of DLT in a deployed wireless sensor network.
The results show that DLT outperforms existing protocols in
terms of data yield, latency, and energy consumption.
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