
COSE: A Query-Centric Framework
of Collaborative Heterogeneous

Sensor Networks
Yuan He, Member, IEEE, and Mo Li, Member, IEEE

Abstract—Demands on better interacting with physical world require an effective and efficient collaboration mechanism of multiple

heterogeneous sensor networks. Previous works mainly focus on each single and specific sensor network, thus failing to address

issues in the newly emerging scenario. In this paper, we propose COSE, a query-centric framework of collaborative heterogeneous

sensor networks, where sensor networks collaborate with each other for effective and efficient processing of queries. Finding an

optimal strategy of query processing with respect to energy efficiency is a crucial issue in COSE, which we formulate into an

optimization problem, called EE-QPS. We prove the NP-hardness of EE-QPS, and then design a heuristic approach named IAP by

utilizing the correlation (called implication in this paper) among different sensor networks. The experimental results demonstrate that in

the context of COSE, IAP achieves optimized energy efficiency under various settings.

Keywords—Sensor network, query processing, energy.

Ç

1 INTRODUCTION

DUE to the recent advances in wireless communication
and microelectronic technologies, both the price and

size of sensors have decreased quickly. Today’s applications
for sensor networks range from personal to mission critical
systems including scientific observation, digital life, home
automation, environment surveillance, traffic monitoring,
and so on [1], [2], [3]. Many of them are developed and
promoted by governments, enterprises, and public organi-
zations, offering continuous collection of real-time informa-
tion, fulfilling the requirement of people’s daily lives.

In the foreseeable future, we expect to witness the
proliferation of sensor networks with a variety of functions
that require a comprehensive collaboration mechanism
among them. Specific designs are necessary to manipulate
a fabric of multiple sensor networks, facilitate the collabora-
tion among them, and support efficient query processing.
Previous studies in sensor networks, however, mainly focus
on the performance and efficiency inside a single sensor
network [1], [2], [3]. In this work, we broaden the research
into the scope of multiple sensor networks.

This study is indeed motivated by a practical application
of Qinhuangdao Oilport in China. Timely planning is
required as a critical part in the management of oil

production. The oil production flow is related to many
factors such as oil supplies in oil fields, the flux capacity of
oil pipeline transmission, landway traffic, and environ-
ments of harbors. Formerly, we can only make relatively
static decisions based on coarse estimations on these factors.
The output of decisions often suffers from the dynamics of
these factors, causing unredemptive loss of profit and even
serious accidents. Therefore, a number of preliminary
wireless sensor networks (WSNs) are deployed along the
oil production flow to obtain live environmental data.

To truly utilize WSNs in the above application, however,
many challenges need to be addressed. The multiple sensor
networks are usually heterogeneous, namely adopting
different sensors, sensing different types of data, using
different communication protocols, and powered by differ-
ent energy sources. Previous studies mainly concentrate on
data collection and query processing in a single sensor
network [1], [2], [3]. Using these approaches, we can only
obtain isolated and incomplete results, inevitably leading to
unilateral and even incorrect decisions. Also, the sensor
networks continuously generate huge volumes of data with
various attributes, simply gathering all the data and
processing them in a centralized manner is communica-
tion-intensive. Thus, distributed sensing and collaborative
query processing among multiple sensor networks are
indispensable for the above application. Moreover, the
sensor networks are likely to receive substantive complex
ad hoc queries, while the sensors are usually energy
constrained and not easily rechargeable. Therefore, en-
ergy-efficient query processing with multiple sensor net-
works is a crucial issue but has never been studied before.
Considering that all the sensor networks are spatially
distributed and independent, how to enable them to
effectively collaborate is a challenging issue, even if the
optimal strategy of query processing is provided.

To address the above challenges, we propose COSE, a
query-centric framework of collaborative heterogeneous

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012 1681

. Y. He is with the Tsinghua National Laboratory for Information Science
and Technology and the School of Software, Tsinghua University, Room
501, Block A, Liye Building, SI-Park, Taike Park, New District, Wuxi,
Jiangsu 214000, China. E-mail: he@greenorbs.com.

. M. Li is with the School of Computer Engineering, Nanyang Technological
University, N4-02C-108, 50 Nanyang Avenue, Singapore 639798.
E-mail: limo@ntu.edu.sg.

Manuscript received 31 Aug. 2011; revised 19 Jan. 2012; accepted 26 Jan.
2012; published online 13 Feb. 2012.
Recommended for acceptance by S. Papavassiliou, N. Kato, Y. Liu, C.-Z.
Xu, and X. Wang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number
TPDSSI-2011-08-0586.
Digital Object Identifier no. 10.1109/TPDS.2012.72.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

as they are correlated. We call such correlations among
sensor networks implication.

Implications can be utilized to save the total energy cost
of query processing. Specifically, when we process a query
involving multiple sensor networks, the data from pre-
viously queried sensor networks can be used to partially
infer the data of the subsequently queried sensor networks.
Therefore, it costs the subsequent ones fewer operations
(including sensing and communication) to obtain the
necessary data. The total energy cost to process this query
is thus reduced. For example, in the motivating application,
when setting a schedule for the oil production flow, after
we obtain the information from the harbor surveillance
sensor networks, we may sweep off those harbors under
infeasible condition. In the subsequent stages, we only
query the status of traffic and oil pipelines from only a
portion of sensor networks related to the feasible harbors,
saving unnecessary operations.

Therefore, in a query-centric framework of collaborative
heterogeneous sensor networks, it is of great significance to
schedule the sequence of query processing to achieve the
optimized overall energy efficiency by fully utilizing the
implications among sensor networks. Achieving the opti-
mized schedule, however, is nontrivial in COSE. In later
discussion, we will first formulate the query optimization
problem and prove its NP-hardness even with full knowl-
edge of all the affecting factors. Second, it is yet hard to obtain
the implications, which vary with different pairs of sensor
networks along time. Third, most operations in COSE must
be executed in a distributed fashion, such as data sharing
among sensor networks and implication quantification.

3 DESIGN

This section elaborates the design of COSE. Since COSE is
built upon numerous sensor networks, we need to provide
a general mechanism of membership management and
information sharing among the sensor networks. In the
following sections, we, respectively, introduce the basic
infrastructure of COSE, formalize the framework of
collaborative heterogeneous sensor networks as data
sources with different attributes, and present the sink-
overlay construction.

3.1 Basic Infrastructure

COSE consists of a central manager (CM) and numerous
collaborative heterogeneous sensor networks. Both CM and
the sinks of sensor networks are connected over the
Internet. CM performs the following functions:

1. To manage the membership and coordinate sensor
networks in the sink-overlay. CM maintains a list of
all active sensor networks in COSE. The format of
the information stored for each sensor network
together with the formalization is described in
Section 3.2.

2. To provide a uniform web portal that accepts
external queries and outputs responses. Though
web portal is not indispensable in COSE, it makes
it convenient for the users to issue queries and
obtain the live data.

3. To schedule the pipeline of query processing.
Considering the aforementioned energy constraints,
query processing in COSE is an optimization
problem with respect to energy efficiency in sensor
networks. As we elaborate in Section 4, CM plays the
role of scheduling query processing. It determines
the pipeline of processing, and collects data from the
queried sensor networks.

On the other aspect, the sinks serve as gateways for
interconnecting the sensor networks in COSE. They self-
organize into a multidimensional sink-overlay. Sink-overlay
construction is introduced in Section 3.3.

3.2 Formalization of Sensor Networks

COSE is an integrated framework that manipulates colla-
boration among sensor networks. Information exchange is
frequent in the sink-overlay. We provide a uniform
formalization for sensor networks including the elementary
properties, such as location, scale, function, energy, and
data attributes, etc. This allows us to formalize a sensor
network as a data source that produces meaningful data at
quantified costs. We formalize a sensor network W by the
following expressions. W is a sensor network in COSE
containing four elementary domains

W ¼ <Basic; Energy;Data; Overlay>;where
Basic ¼ <Name; Location; Scale>

Energy ¼ <Unit cost; Current capacity>
Data ¼ <Period of validity; Attribute W1;

Attribute W2 . . .>

Overlay ¼ <Neighbor List1; Neighbor List2 . . .>

The Basic domain differentiates sensor networks and
provides information for the potential collaboration among
them. It includes the basic information of a sensor network,
such as Name, Location, and Scale. Name is a unique ID
assigned by the owner of the sensor network to distinguish
from other sensor networks. Location [4] is the geographical
location where the sensor network is deployed, for
instance, longitude and latitude. Scale denotes the size of
the sensor network, usually represented by the number of
sensors contained.

The Energy domain is utilized to evaluate the query
overhead in a sensor network, providing necessary infor-
mation for the query optimization process. Unit cost
represents the average unit energy cost for a sensor to
sense and transmit data once, measured by nJ. Here, we do
not differentiate sensing, transmission or other in-network
operations and wholly regard them as a unit when
measuring the energy consumption. Current capacity de-
notes the current total energy capacity of the sensor
network. Also we neglect the diversity of energy distribu-
tion on individual sensors and focus on the energy
efficiency of sensor networks and the interactions among
them from a macro point of view. In practice, the unit cost
of sensing may be measured by the product of the sensor’s
current under active sensing mode and the time needed to
sense once. The current capacity may be measured by
monitoring the battery voltage. There are also existing
techniques [5] to precisely track the energy-related factors.

HE AND LI: COSE: A QUERY-CENTRIC FRAMEWORK OF COLLABORATIVE HETEROGENEOUS SENSOR NETWORKS 1683

The Data domain describes the sensor data of a sensor
network and relates sensor networks through different
attributes. It is utilized in the sink-overlay construction and
data sharing. Period of validity denotes the time for the
sensed data to be valid. The succeeding sequence in the
Data domain lists all the physical attributes of the sensor
data. For example, a thermometer sensor network usually
generates the data with temperature attributes. A sensor
network monitoring seawater is able to sense data with
three attributes, including temperature, depth, and salinity.

The Overlay domain reveals the structure of sink-overlay
and directs data sharing among sensor networks. It
specifies the neighboring sensor networks of the current
sensor network in the sink-overlay. Here, we define
neighbor to be a sensor network connected with the current
sensor network via a sink-overlay connection, as introduced
in the next section.

3.3 Sink-Overlay Construction

As mentioned in Section 3.1, sink-overlay facilitates query-
centric processing in COSE. When constructing the sink-
overlay, it is necessary to investigate the implications
among sensor networks, which benefits query processing,
especially in terms of energy efficiency. In general, sensor
networks with implications to each other can be classified
into two cases: 1) they are deployed with spatial proximity,
i.e., geographically close to each other; or 2) they have
functional proximity. In other words, they probably have
common attribute(s) in their sensor data. Existing data
correlations have been validated by both practical deploy-
ments and theoretical models [2], [6].

Since all components of COSE are connected through the
Internet, the sink-overlay does not relate to the connectivity
among sensor networks. It is an application-layer abstract
which facilitates data sharing and query processing. Connec-
tions in the sink-overlay indicate the relationship of implica-
tions and potential collaboration among sensor networks.

Based on the above foundations, we construct the sink-
overlay using an implication-aware method. The overlay
connections are categorized into two types, local connection
and attributed connection, which are built among the sinks of
the sensor networks. A local connection connects a sensor
network with another one in its adjacent area. An attributed
connection is built between two sensor networks that have
common data attribute(s).

The sink-overlay connections are constructed as follows:
When a new sensor network joins COSE, it registers its
information at CM. Upon receiving the registration, CM
checks its local database to returns a list of candidate
neighbors to the new sensor network. Each candidate
neighbor has spatial proximity or(/and) functional proxi-
mity with the new one. CM determines this list according to
the information of the Basic and Data domains of the sensor
networks. After receiving the list, the new sensor network
connects to all the neighbors in the list, either with local
connections or attributed connections. This connectivity in-
formation is further used to update the Overlay domains of
corresponding sensor networks.

Fig. 2 shows an example of sink-overlay. Suppose sensor
network A newly joins in with three data attributes
<A1; A2; A3>. First it connects with the three geographically
adjacent sensor networks. Then, A connects with sensor

network B becauseA1 ¼ B1. In other words, sensor net-
works A and B have a common attribute. Similarly, A
connects with sensor networks C, D, and E.

3.4 Data Sharing Policy

Data sharing is carried out among neighboring sensor
networks as a manner of measuring the implications among
them. Besides on-demand sensing to resolve queries, every
sensor network periodically collects its sensor data to track
the status in the network. The sensor data from periodical and
on-demand sensing are stored at the sinks until expiration.
After a preconfigured period, every sensor network ex-
changes the latest sensor data with all its neighbors so as to
keep them updated. Note that the frequency of periodical
data sensing is configured much lower than that of on-
demand sensing. Thus, the overhead of data sharing through
the Internet is not a significant issue compared with saving
the energy costs in the energy-constrained sensor networks.
Since the sink-overlay neighbors have spatial or functional
proximity, data sharing among neighboring sensor networks
enables local collaboration among heterogeneous sensor
networks, as well as cross-area collaboration among sensor
networks with similar functionalities.

4 QUERY PROCESSING IN COSE

We focus on processing complex ad hoc queries (or complex
query in short), which has not received much attention
before. A complex query acquires the data of multiple sensor
networks. Different with data stream queries, complex
queries are not predefined or repeated with data streams.
While the sink-overlay in COSE facilitates data sharing
among the sensor networks, a challenging problem is how to
process a complex query involving multiple sensor networks
with minimal energy cost. We address this issue by
emphasizing the implication-aware collaboration among
the sensor networks. Instead of digging into the concrete
operations (such as data sensing, filtering, aggregation, and
caching) and correlation patterns of sensor data, we focus on
the impact of implication and the methodology to utilize it,
so that we can minimize the total energy cost of query
processing in COSE. Note that COSE determines the
schedule of sensor networks for query processing along the
pipeline. It does not affect the original transfer/aggregation
mechanism [7], [8] of any sensor network.

In this section, we first elaborate how a query is resolved
in COSE and formulate this process into an optimization

1684 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

Fig. 2. The sink-overlay.

problem. We further prove it is NP-hard. Then, we propose
a heuristic approach to resolve it, which achieves optimized
energy efficiency.

4.1 The Query Optimization Problem

As we elaborated in Section 2, implications can be utilized
to save the energy cost of query processing. Hence, in
COSE, a complex query is processed by a pipeline of the
involved sensor networks, so that the implications among
sensor networks can be fully utilized.

Suppose a queryQ concerns a subset of sensor networks
in COSE, sayfW1;W2 . . .WNg. As shown in Fig. 3, we denote
a sensor network as a node, ignoring the concrete structures.
The pipeline to resolve a complex query can be depicted as a
directed cycle in the graph, starting and ending at CM. At
the beginning, query Q is received from the web portal and
interpreted. Then, CM selects W1 to forward query Q. After
filtering the data gathered from W1, query Q is regulated by
further constraining its selection predicates (while query
regulation is out of the discussion of this paper, we just
enumerate all the phases of query processing). Then, query
Q and the filtered data are passed to W2. Similarly, after W2

finishes its work, it passes query Q and the filtered sensor
data to W3. The process continues until all the N sensor
networks have been accessed one by one. In the end, the
complete result of query Q is returned from the last sensor
network WN to CM, and then output to the user.

It might be argued that energy efficiency of the pipeline
is achieved at the cost of response latency of a query. In fact,
the time required to collect all the data in a sensor network
is usually less than a few seconds. Therefore, the pipeline-
processing still satisfies the requirement of response
latencies. Data processed by the pipeline can be transmitted
from one WSN to another directly through Internet, which
does not require any relaying WSN.

4.2 Problem Formulation

The Energy-Efficient Query Processing in COSE (EE-QPS)
problem can be modeled with a directed weighted graph
G ¼ ðV ;EÞ. Suppose we haveN sensor networks involved.
V is the set of nodes. Let nodesv1; v2; . . . ; vN represent the
sensor networks W1;W2; . . . ;WN . E is the set of edges
representing implications. Edge eij is the edge from vi to vj,
and sij is the weight of eij (i 6¼ j).

We define sij as the index of implication from Wi to Wj.
Instead of directly measuring the correlation between Wi

and Wj; sij is a factor to quantify the proportion of
information in Wj that remains uncertain when the data of
Wi are known. Specifically, for a certain query involving Wi

and Wj, the quantity of eligible results returned from Wj is

invariable. When Wi is first queried, the smaller sij is, the
more information of Wj can be inferred from the data of Wi,
and the less information of Wj needs to be collected
afterwards. Note that sij is not necessarily equal to sji.
Specially, sii ¼ 1. For i 6¼ j, when Wj is completely inde-
pendent from Wi; sij ¼ 1; when Wj can be completely
inferred from Wi; sij ¼ 0.

We define Ci as the original energy cost in sensor
network Wi (measured by nJ) incurred by a query, when no
information of Wi is inferred from other sensor networks.
According to the formalization in Section 3.2, Ci ¼
Unit cost� Scale for Wi. In order to balance the load
among different sensor networks, we further take the
remaining energy capacity into consideration. Thus, the
normalized value is used in the subsequent computations.
Abusing notations, we still use Ci to denote it. Ci ¼
Unit cost� Scale=Current capacity of Wi.

For a complex query, the involved sensor networks are
correlated with each other. Therefore, the cost reduction in a
subsequently queried sensor network is an accumulative
effect caused by all the previously queried ones. It is difficult
to accurately estimate the cumulative effect of implications
among sensor networks, especially in dynamic and un-
predictable environments. As a simplified case, we assume
all sij are independent from each other. Thus, the aforemen-
tioned accumulative effect can be quantified by multiplying
the indices of implications from all the upstream sensor
networks along the pipeline to the current one.

Taking Fig. 3 as an example, we process a query through
the pipeline ðW1 !W2 ! � � � � � � ! WNÞ. The querying cost
Pi incurred in sensor network Wi is calculated by

Pi ¼ Ci �
Y

1�j�i
sji:

For convenience, we setsii ¼ 1. The total cost P incurred in
all the N sensor networks is calculated by

P ¼
XN
i¼1

Pi ¼
XN
i¼1

Ci �
Y

1�j�i
sji

 !
: ð4:1Þ

Clearly, we have N ! options to schedule the pipeline of
query processing. Meanwhile, due to the natural hetero-
geneity, the indices of implications probably vary a lot with
different pairs of sensor networks. Therefore, different
pipelines present great difference in the total energy costs.
Toward the same query result, a well scheduled pipeline
incurs much less energy cost than the poorly scheduled
ones. And for any complex query, there exists an optimal
pipeline scheduling, which incurs the minimum total cost in
resolving it. Formally, the EE-QPS problem in COSE is
formulated as follows:

INSTANCE. A sequence of positive constants
ðC1; C2; . . . ; CnÞ, where Ci denotes the normalized original
cost in sensor network Wi incurred by a query. Correspond-
ingly, there is an implication matrix

SN;N ¼

s11 s12 � � � s1N

s21 s22 � � � s2N

..

. ..
. . .

. ..
.

sN1 sN2 � � � sNN

2
6664

3
7775; ð4:2Þ

where 0 � sij � 1; sii ¼ 1 for all integers i and j in ½1; N�.

HE AND LI: COSE: A QUERY-CENTRIC FRAMEWORK OF COLLABORATIVE HETEROGENEOUS SENSOR NETWORKS 1685

Fig. 3. The query-centric framework.

SOLUTION. (a1, a2; . . . ; aN), which is a permutation of
ð1; 2; . . . ; NÞ.

MEASURE.

P ¼
XN
i¼1

Cai �
Y

1�j�i
sajai

 !
;

which is the total cost of all the involved sensor networks.
The optimal solution of the problem minimizes the value of
P , i.e., achieves the best energy efficiency.

4.3 Hardness of EE-QPS

In this section, we theoretically analyze the complexity of
finding the optimal solution to the EE-QPS problem.

Theorem 4.1. The EE-QPS problem is NP-hard.

Proof. We show a reduction from SET-COVER problem. In
SET-COVER, we are given a universeU of m elements
and a collection of sets � ¼ fS1; S2; . . . ; Sng,

Si � U;
[

1�i�n
Si ¼ U:

The goal is to decide, for some given k, if there exist no
more than k sets in � whose union is U .

Given an instance of SET-COVER, we construct a
directed weighted graph, where a node is mapped to a
set or an element in the instance of SET-COVER. There
are ðnþmÞ nodes in the graph, denoted by
v1; v2; . . . ; vnþm. We use v1; v2; . . . ; vn to denote the n sets
while vnþ1; vnþ2 . . . vnþm to denote the m elements.
Abusing notations, we also use við1 � i � nþmÞ to
represent its corresponding set or element.

First, we set Ci ¼ 1 if node vi denotes a set whileCi ¼
nþ 2 if node vi denotes an element. Moreover, we add
an auxiliary node vnþmþ1 into the graph, which does not
represent a set or an element. We setCnþmþ1 ¼ nm.

Second, we set the weights of edges as follows:

sij ¼ 0, if vi is set and vj is element, vj 2 vi;
snþmþ1;i ¼ 0, if vi is a set;
sj;nþmþ1 ¼ 1=n, if vj is an element;
sij ¼ 1 for all the other cases.

Thus, we obtain a matrix Snþmþ1;nþmþ1, where each of
the first n rows/columns corresponds to a set, each of the
following m rows/columns corresponds to an element,
and the last row/column corresponds to the auxiliary
node vnþmþ1

Snþmþ1;nþmþ1 ¼

1 1 � � � 1
1 1 � � � 1
..
. ..

. . .
. ..

.

1 1 � � � 1
1 1 � � � 1
1 1 � � � 1
..
. ..

. . .
. ..

.

1 1 � � � 1
0 0 � � � 0

2
66666666666664

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{n

0 1 � � � 0
1 1 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � 1
1 1 � � � 1
1 1 � � � 1
..
. ..

. . .
. ..

.

1 1 � � � 1
1 1 � � � 1

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{m

1
1
..
.

1
1=n
1=n

..

.

1=n
1

3
77777777777775
:

Now we have constructed an instance for the EE-QPS
problem. It is obvious that reduction above is polynomial.

Next we show that solving this instance of EE-QPS also
solves the original instance of SET-COVER.

First we show that if the answer to the SET-COVER
instance is “yes,” then there is a solution to the above
instance of EE-QPS with a cost no more thankþ 1.

Suppose ðv1; v2 . . . vtÞ is a solution to the SET-COVER
problem ðt � kÞ, we may construct a solution
ða1; a2 . . . anþmþ1Þ to the instance of EE-QPS as

ða1; a2 . . . anþmþ1Þ ¼ ðv1; Z1; . . . vt; Zt; vnþmþ1; V
0Þ; ð4:3Þ

where every Zið1 � i � tÞ represents a sequence of
elements not covered by sets v1; v2 . . . vi�1 but covered
by set vi:V 0 is the sequence of the (n-t) sets which are not
selected by the solution ðv1; v2 . . . vtÞ. According to the
above value assignments, the total cost of the solution
ðv1; Z1; . . . vt; Zt; vnþmþ1; V

0Þ ¼ tþ 1 � kþ 1.
Next, we show that if there is a solution to the above

instance of EE-QPS with a total cost no more than
kþ 1, then the answer to the original SET-COVER
instance is “yes.”

Supposeða1; a2; . . . anþmþ1Þ is a solution to the instance
of EE-QPS, which has a total cost of no more thankþ 1.
According to the above value assignments, we have the
following deductions.

1. The auxiliary node vnþmþ1 must appear after all
the elements. Otherwise, the total cost is
> nþ 1 � kþ 1, which contradicts with the pre-
sumption.

2. An element cannot appear until at least one set
covering it appears. Otherwise, the total cost is
> nþ 2 > kþ 1.

Third, the appearance of the auxiliary node vnþmþ1 in
ða1; a2 . . . anþmþ1Þ separates all the sets into two parts.
Suppose there aret sets that appear beforevnþmþ1, then
the total cost of ða1; a2 . . . anþmþ1Þ � tþ 1. Therefore,
kþ 1 � tþ 1, i.e., k � t. According to the above deduc-
tions, these sets cover all the elements. Thus, we find a
solution to the SET-COVER problem by selecting the t
sets that appear beforevnþmþ1 in ða1; a2 . . . anþmþ1Þ. Since
k � t, step 2 is proved.

By combining 1 and 2, we have proved that the SET-
COVER problem is polynomial-time reducible to EE-
QPS. Hence, EE-QPS is NP-hard. tu

4.4 Pipeline Scheduling

Due to the NP-hardness of EE-QPS problem, we need a
heuristic approach to resolve it. The environment of COSE
produces the following challenges:

First, sensor networks in COSE are deployed separately
and preserve independency to each other. It is difficult to
host all the sensor data on a sole server, if not impossible.
Second, since COSE integrates numerous sensor networks,
it is expensive to share the sensor data throughout the entire
COSE. Thus, any sensor network in COSE can only have
partial knowledge. Third, considering the characteristics of
sensor networks, their statuses change frequently and are
hard to predicate. It is nontrivial to accurately quantify the
indices of implications between any two of them.

Bearing these points in mind, we design the heuristic
approach, Implication-Aware Pipeline (IAP) as follows: a

1686 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

sensor network periodically quantifies the indices of im-
plications from itself to all its neighbors. Only indices of
implications are reported to CM and kept updated. Based on
the latest estimated implications, we use A	 algorithm to find
the optimal scheduling of query processing. A greedy
algorithm is also proposed for faster decisions, which
outputs the close-to-optimal scheduling of query processing.

4.4.1 Quantification of Implication

Since the data in sensor networks change frequently,
implications are periodically estimated in COSE. Suppose
X and Y are neighboring sensor networks. We use
information entropies to quantify the indices of implications
from sensor network X to sensor network Y . Specifically,
what we need is a factor to quantify the proportion of
information in sensor network Y that remains uncertain
when the data of X are known. An important point that is
worth noticing here is implication is asymmetric in general.
The mathematical properties of conditional entropy well fit
our need in the problem formulation. Thus, we define

sXY ¼
HðY jXÞ
HðY Þ ¼

�
P

i

P
j P ðxi; yjÞ logP ðyjjxiÞ

�
P

j P ðyjÞ logP ðyjÞ
: ð4:4Þ

We directly use X and Y to represent the data sets ofX
and Y while xi, yj are the corresponding sensor data,
respectively. HðY Þ is the original entropy, denoting the
original uncertainty of data set Y . HðY jXÞ is the conditional
entropy, denoting the uncertainty of data set Y when data
setX is already known. The conditional probability P ðyjjxiÞ
is calculated with those xi and yj falling into the same Period
of validity. For instance,P ðyj ¼ ujxi ¼ vÞ is the probability of
yj to be u, given the current value of xi to be v. The quotient
sXY ¼ HðY jXÞ=HðY Þ denotes the proportion of information
in Y that remains uncertain and needs to be measured when
X is known. It appropriately expresses the physical mean-
ing of implication from X to Y .

According to the data sharing policy introduced in
Section 3.3, a sensor network knows the latest data of its
neighbors, so X can easily calculates sXY . After the
calculations, all sensor networks upload the updated indices
of implications to CM. Thus, CM obtains a global view of
implications in COSE while needs not collect the detailed
sensor data.

Because a sensor network shares its data only with its
neighbors, i.e., a small portion of sensor networks in COSE,
it is possible that some sXY involved in pipeline scheduling
has not been calculated before the first time it is enquired.
In case this happens, CM sets the initial value of sXY to be 1,
which means Y is initially assumed to be independent from
X. Meanwhile, CM sends a message to the sinks ofX and
Y , requesting them to build a new connection in the sink-
overlay. The implications between X and Y can be
calculated from then on. Moreover, indices of implications
are updated through periodical data exchanges so that the
accuracy of quantifications is adaptive to the dynamic
environments of sensor networks.

4.4.2 Pipeline Scheduling of Query Processing

In this section, we first present the optimal scheduling of
query processing. Then, we give a greedy algorithm that
achieves close-to-optimal scheduling.

1. The Optimal Scheduling
Due to the NP-hardness of EE-QPS, it is very unlikely that

one can solve the problem in polynomial time. Nevertheless,
when the number of sensor networks involved in a query is
small, we can adopt the A	 algorithm [9] to find the optimal
scheduling of the pipeline. Given an instance of EE-QPS with
N sensor networks ðW1;W2; . . . ;WNÞ, the scheduling process
can be illustrated with a tree called EE-QPS Tree. Fig. 4 shows
an EE-QPS Tree to schedule 3 sensor networks. This tree roots
at an empty node. The nodes at level i represent all the
sequences ofi sensor networks. Therefore, each leaf node in
the tree, respectively, represents a candidate scheduling.
SupposeM is a node at level iandM 0 is a node at level iþ 1.R
and R0 are the corresponding sequences ofM and M 0. There
is an edge fromM toM 0 if and only if R0 can be constructed by
inserting the (iþ 1)th sensor network to the tail of R.

Suppose R ¼ ðv1; v2; . . . ; viÞ, we define a heuristic func-
tion for node M as follows:

F ðMÞ ¼ GðMÞ þHðMÞ;where

GðMÞ ¼
Xi
k¼1

Cvk �
Y

1�j�k
svjvk

 !

HðMÞ ¼
X
Wt 62R

Ct �
Y

1�j�N
sjt

 !
:

GðMÞ is the current total cost incurred in sensor networks
ðv1; v2; . . . viÞ. HðMÞ is the estimated lower bound of total
cost incurred in the subsequent sensor networks, which are
not included in R. Thus, F ðMÞ is the cost corresponding to
node M.

We then use the A	 algorithm to find the minimum-cost
leaf node in EE-QPS Tree. SinceHðMÞ is a lower bound on
the future cost, the result returned by A	 is guaranteed to be
optimal [9]. Although in the worst case the algorithm will
visit all the OðN !Þ leaves, on most typical inputs the A	

algorithm can stop much earlier.
2. The Greedy Algorithm
When the number of sensor networks involved in a

query gets larger, it will be computationally infeasible to
execute the A	 algorithm. Hence, we design a greedy
algorithm to find a close-to-optimal scheduling, the
temporal complexity of which is only OðN2Þ.

HE AND LI: COSE: A QUERY-CENTRIC FRAMEWORK OF COLLABORATIVE HETEROGENEOUS SENSOR NETWORKS 1687

Fig. 4. An EE-QPS tree.

Given an instance of EE-QPS with N sensor networks
ðW1;W2; . . . ;WNÞ, we suppose ðV1; V2; . . . ; VNÞ, a permuta-
tion of ðW1;W2; . . . ;WNÞ, is the final scheduled pipeline.
Then, the process of scheduling can be divided into N þ 1
states T0; T1; . . . ; TN , where Ti refers to the state when the
first i sensor networks of the pipeline have been selected.
Correspondingly, we define two sets R and R0. Given state
Ti, R contains the first i sensor networks that have been
determined in the pipeline, while R0 contains the ðN � iÞ
unselected ones. We define a heuristic function as follows to
select the (iþ 1)th sensor network of the pipeline

UðvÞ ¼ Cv
Y
x2R

sxv þ
X

y2R0�fvg
Cy � svy �

Y
x2R

sxy

 !
: ð4:5Þ

The parameters Cv, Cx, and Cy are the original costs,
which can be known from the basic information of the
sensor networks. sxv, sxv, and svy are the indices of
implications quantified as above. UðvÞ is the sum of two
parts. The first part is the energy cost in v if it is selected as
the ðiþ 1Þth sensor network. The second part is the upper
bound of total energy cost in the remaining ðN � i� 1Þ
unselected sensor networks, if v is selected as theðiþ 1Þth
sensor network. UðvÞ denotes the maximal energy cost
incurred in the remaining ðN � iÞ sensor networks if v is
selected as theðiþ 1Þth sensor network of the pipeline.

Therefore, the ðiþ 1Þth sensor network of the pipeline
should be sensor network v which minimize UðvÞ, ex-
pressed as follows:

Viþ1 ¼ arg min
v2R0

UðvÞ: ð4:6Þ

Subsequently, Viþ1 is removed from R0 and added into R.
After N rounds of selection, the pipeline is finally decided.
As soon as the pipeline is scheduled, the query is passed
from CM to sensor network V1, then V1 to V2, then V2 to V3

and so on. In the end, the query is finished on VN . The final
result is then returned to CM and output to the user.

5 EXPERIMENTS

We conduct experiments to validate our scheme and
evaluate its performance. In Section 5.1, we report our
measurement on the implications among real sensor
networks. The results demonstrate the universality of the
mutual implications in practical sensor networks. We then
evaluate the proposed IAP approach with large-scale
simulations. The results are presented in Section 5.2.

5.1 Real-World Observations

We observe a real deployed sea monitoring system in our
OceanSense project [10], which acts as a preliminary attempt

toward COSE. OceanSense aims to build an integrated
information system of multiple sensor networks for envir-
onment surveillance on the sea. Note that the data we
provide here are to express the implication among hetero-
geneous data. We examine a 24-hour data set collected from
OceanSense. Using (4.4), we calculate the indices of
implications among three types of data (temperature,
humidity, and illumination). As shown in Table 1a, entry
(X, Y) denotes the index of implication from sensor network
X to sensor network Y .

We also carry out a new experiment with CitySee [11]: an
urban sensing system for CO2 Monitoring. CitySee currently
deploys over 1,000 sensor nodes in four sensor networks.
For ease of presentation, let’s name two of the sensor
networks as NetA and NetB. The geographical distance
between NetA and NetB is at least 1 kilometer. We then
observe the temperature readings on a sensor in NetA and
the CO2 readings on another sensor in NetB for 24 hours.
Using (4.4), we calculate the implications between the two
sensor networks as shown in Table 1b.

The results in Table 1 typically reflect the existence of
implications among heterogeneous sensor networks, vali-
dating the assumption of our scheme.

5.2 Performance Evaluation

We conduct several groups of simulations to evaluate the
performance of IAP based on the data collected from
OceanSense. Table 2 lists the parameters we used in the
simulations. The two algorithms of IAP are, respectively,
denoted as IAP-A	 and IAP-Greedy.

The following basic settings apply for all the simulations:
NW ¼ 30 and NQ ¼ 1;000, i.e., we consider the system
involving 30 different sensor networks and inject 1,000
queries for performance evaluation. The sensor networks
involved in each query are randomly chosen from the 30
simulant sensor networks. We vary the other relevant
parameters in different simulations for comparisons.

1688 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

TABLE 1a
Implications among Different Sensors

TABLE 1b
Implications between two WSNs in CitySee

TABLE 2
Parameters in the Simulations

5.2.1 Benefit of Implication-Aware Approaches

We first evaluate the performance with a general setting,
where n½1::NW � conform to a uniform distribution on [3, 15]
and c½1::NW � conform to a uniform distribution on [10, 50].
This group of simulations is divided into two rounds. In
round 1, s½1::NW �½1::NW � conform to a uniform distribution
on [0, 1]. In round 2, s½1::NW �½1::NW � conform to a uniform
distribution on [0.5, 1].

We compare IAP-Greedy with two other approaches.
One of them is a naive approach, which broadcasts a query
to all the involved sensor networks simultaneously and all
the sensor networks process the query independently
without awareness of implic ations among each other.
Obviously the total energy cost of this approach is the
sum of the original costs incurred in all the involved sensor
networks. The other is a random approach, which processes
a query in a randomly scheduled pipeline.

Figs. 5a and 5b plot the energy costs of all 1,000 queries
using three different approaches in round 1 and round 2.

Compared with the naive approach, the percentage of
cost saved by the random approach has mean 72.2 percent
and standard deviation 15.7 percent in round 1, and has
mean 52.6 percent and standard deviation 17.3 percent in
round 2. This shows the benefit of implications among
sensor networks on improving the energy efficiency of
query processing.

IAP-Greedy performs even better than the random
approach. Compared with the random approach, there is
a further energy saving in IAP-Greedy. The percentage of
cost saved by IAP-Greedy has mean 34.5 percent and
standard deviation 26.1 percent in round 1, and has mean
25.8 percent and standard deviation 10.6 percent in round 2.
IAP-Greedy always outperforms the random approach in
all instances. This validates the fact that IAP-Greedy
optimizes the pipeline scheduling by intentionally utilizing
the implications among sensor networks.

It is worth noticing that in the two rounds of simulations,
we conduct the comparisons using different settings of
implications. The simulation results suggest that as long as
the sensor networks are correlated with each other, it is
always necessary and beneficial to adopt the implication-
aware approaches.

5.2.2 Comparison among Approaches

In the following simulations, we compare IAP- A	 and IAP-
Greedy with the random approach using various settings.

We evaluate the performance gains by measuring the
percentage of saved cost for each query:

Percentage of saved cost ¼ 1� Cost of IAP

Cost of the random approach
:

1. Performance Gain versus Implication Intensity. Let
n½1::NW � conform to a uniform distribution on [3, 15] and
c½1::NW � conform to a uniform distribution on [10, 1000]. We
conduct three rounds of simulations. In round 1,
s½1::NW �½1::NW � conform to a uniform distribution on [0.7,
1]. In round 2, s½1::NW �½1::NW � conform to a uniform
distribution on [0.4, 0.7]. In round 3, s½1::NW �½1::NW �
conform to a uniform distribution on [0.1, 0.4]. With such
settings, the variance of implications is unchanged while
the intensities are varied. Note that a smaller value of
implication index indicates a stronger implication from one
sensor network to another, as stated in Section 4.2.

Fig. 6a plots the average costs of the random approach,
IAP-Greedy, and IAP- A	 for all the 1,000 queries. Fig. 6b
shows the cumulative distribution of the performance gains
of IAP-Greedy and IAP- A	. From the results we can see
apparent advantages of IAP over the random approach. The
performance gains of IAP increase along with the implica-
tion intensity. Meanwhile, IAP-Greedy always presents
comparable performance with IAP- A	, and the latter yields
optimal solutions in theory. Comparatively, IAP- Greedy
yields close-to-optimal solutions with much lower overhead.

2. Performance Gain versus Implication Variance. Let
n½1::NW � conform to a uniform distribution on [3, 15] and
c½1::NW � conform to a uniform distribution on [10, 1000]. We
conduct three rounds of simulations. In round 1,
s½1::NW �½1::NW � conform to a uniform distribution on [0.4,
0.6]. In round 2, s½1::NW �½1::NW � conform to a uniform
distribution on [0.25, 0.75]. In round 3, s½1::NW �½1::NW �
conform to a uniform distribution on [0, 1]. With such
settings, the implications in the three rounds have equiva-
lent means but different variances.

Fig. 7a plots the average costs of the random approach,
IAP-Greedy, and IAP- A	 for all the 1,000 queries. Fig. 7b
depicts the cumulative distribution of the performance
gains. From the results we can see apparent and consistent
advantages of IAP over the random approach with different
implication variances. Again, we are pleased to see
comparable performance of IAP-Greedy and IAP- A	. The

HE AND LI: COSE: A QUERY-CENTRIC FRAMEWORK OF COLLABORATIVE HETEROGENEOUS SENSOR NETWORKS 1689

Fig. 5. Energy costs of IAP-Greedy, Random, and Naive approaches.

random approach increase along with the heterogeneity of
sensor networks. Consider the practical scenarios in
COSE, where different sensor networks are integrated,
the cost of sensing and communication in different sensor
networks is indeed quite heterogeneous. The simulation
result reveals that IAP is especially effective and efficient
for such environments. Moreover, it is worth noticing that
the gap between IAP-Greedy and IAP- A	 keeps consis-
tent, which indicates that IAP-Greedy is applicable and
adaptive to the heterogeneous environments.

5. Running Time. Let c½1::NW � conform to a uniform
distribution on [10, 1000] and s½1::NW �½1::NW � conform to a
uniform distribution on [0, 1]. For all the 1,000 queries, we
repeat the simulations with varied n½1::NW � from 3 to 11.
Fig. 10 shows the average running times for IAP-Greedy
and IAP- A	 to schedule a query. The simulations run on a
PC with 2 GHz Genuine Intel(R) CPU, 1 G Memory, and
Windows XP Professional Operation System. IAP-A	 runs a
bit faster than IAP-Greedy when n½1::NW � � 5. But its
running time increases very rapidly as n½1::NW � increases.
When n½1::NW � ¼ 11, it costs 80.8 sec to schedule a query
with IAP- A	, while the running time of IAP-Greedy still
remains at 0.001 sec in average.

Now we briefly summarize the experimental results. IAP
saves a lot of energy costs by utilizing the implications
among sensor networks during query processing. IAP- A	

yields the optimal scheduling, while IAP-Greedy yields
close-to-optimal scheduling with much shorter running
time. Therefore, we should adopt IAP- A	 when the number
of sensor networks involved in a query is small. And IAP-
Greedy is suitable and efficient in processing queries that
involve many different sensor networks.

6 RELATED WORK

There has been remarkable success in the research field of
sensor networks. The state-of-art technologies, however,
mainly concentrate on the intra-sensor-network issues, such
as in-network sensing control, data processing, and network
protocol design [12], [13]. While much attention has been
put into the networking of distributed sensing, not enough
work has been done for exploring mechanisms to manage,
share, analyze, and understand the data among different
sensor networks. We discuss several related models and
applications in this section, which in some extent show
comparability to our scheme of COSE.

COSE versus Query processing in a single sensor
network. A school of existing works focus on the issue of
query processing [14], [15] in a single sensor network. They
are similar with our scheme in the exploitation and utilization
of correlations in query processing. The data from multiple
sensor networks in COSE, however, are very likely to be
heterogeneous so that the existing schemes are no longer
applicable. While our focus in this paper is not the integration
of heterogeneous data, we propose the concept of sink-
overlay in COSE to realize efficient data sharing among
multiple heterogeneous sensor networks. Meanwhile, the
model-driven approaches in [14], [15] highly rely on the
coupled attributes of sensory data in a single network.
Comparatively, our method is more generic by introducing
information theory to estimate the implications. It is indeed
applicable to both scenarios, i.e., various data attributes in a
single network and heterogeneous data in multiple sensor
networks. Moreover, we take load balance among sensor
networks into account when formulating the query proces-
sing problem, as introduced in Section 4.2. This is also a newly
emerging issue in the context of multiple sensor networks.

COSE versus “Sensor Web.” The term “Sensor Web”
was first introduced by Delin [16]. It is defined as a specific
type of sensor network: an amorphous network of spatially
distributed sensor platforms (pods) that wirelessly commu-
nicate with each other. The novelty of the Sensor Web
architecture lies in the ability of the individual pieces to act
and coordinate as a whole. Sensor Web is an autonomous,
stand-alone, sensing entity, which does not need assemble
resources among sensor networks through the presence of
the World Wide Web. Different from “Sensor Web,” COSE
in this work defines an integrated framework of web and
sensor networks. Sensor networks in COSE preserve their

HE AND LI: COSE: A QUERY-CENTRIC FRAMEWORK OF COLLABORATIVE HETEROGENEOUS SENSOR NETWORKS 1691

Fig. 9. Performance gain versus heterogeneity.

Fig. 10. Comparison of running times.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

