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ABSTRACT
Existing inertial measurement unit (IMU) based human activ-

ity recognition (HAR) approaches still face a major challenge

when adopted across users in practice. The severe hetero-

geneity in IMU data significantly undermines model gener-

alizability in wild adoption. This paper presents UniHAR, a

universal HAR framework for mobile devices. To address the

challenge of data heterogeneity, we thoroughly study aug-

menting data with the physics of the IMU sensing process

and present a novel adoption of data augmentations for ex-

ploiting both unlabeled and labeled data. We consider two ap-

plication scenarios of UniHAR, which can further integrate

federated learning and adversarial training for improved

generalization. UniHAR is fully prototyped on the mobile

platform and introduces low overhead to mobile devices. Ex-

tensive experiments demonstrate its superior performance

in adapting HAR models across four open datasets.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mo-
bile computing systems and tools; •Computingmethod-
ologies→ Machine learning approaches.
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Figure 1: A universal HAR scenario.

1 INTRODUCTION
Human activity recognition (HAR) has played a critical role

in considerable real-world applications. Existing studies [8,

9, 15, 25, 29, 40, 64] have explored the possibility of per-

vasive HAR sensing with inertial measurement unit (IMU)

sensors in commodity smart devices. A significant challenge

arises when most existing approaches are adopted at scale,

i.e., the data heterogeneity caused by real-world diversities

(e.g., different devices and usage patterns) leads to degraded

performance when HAR models are applied across different

user groups. The straightforward solution in addressing such

heterogeneity is to collect a substantial amount of labeled

data from each of the numerous users, which, however, is

prohibitive in practice due to its high overhead.

This paper is motivated by an essential question: can we
have a universal framework that supports applying HAR mod-
els across different user groups of real-world diversities, and
with realistic adoption overhead? As depicted in Figure 1, we

consider an HAR application scenario where a large number

of mobile users have their own data locally collected. The

IMU data of the target users are implicitly collected during

their daily lives and thus unlabeled. The only labeled data are

shared from a small group of participating users (source users),
which are of small size and may be biased in terms of users,

usage patterns, devices, or environments. The raw data trans-

missions from the target users to the cloud server are highly

undesirable due to the prohibitive processing overhead for

the cloud server as well as the related privacy concerns. The

https://doi.org/10.1145/3570361.3613299
https://doi.org/10.1145/3570361.3613299
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objective is to transfer HAR models from the source users to
target users with realistic adoption overhead.

We find existing works poor in the HAR scenario envi-

sioned in Figure 1. Conventional supervised learning models

[15, 25, 27, 64] assume collected labeled dataset is general and

thus suffer from severe performance degradation in practice.

Recent self-supervised learning works [11, 12, 40, 52, 62], in-

cluding those aiming at building foundation models for IMU

sensing, e.g., TPN [40] and LIMU-BERT [62], however, may

still overlook the data heterogeneity and overfit to specific

user domains. Some domain adaptation works [4, 17, 37, 65]

consider certain aspects of diversity but require fully la-

beled data from source users, which still underperform when

source domain labels are limited. We notice that most ex-

isting efforts are focused on directly learning common fea-

tures among raw data, with the implied assumption that data

across different domains already share similar distributions.

However, this assumption does not hold when the sensor

data collected from different user groups are highly hetero-

geneous. As a result, most existing approaches fail to achieve

satisfactory performance in practical adoptions at scale.

This paper explores the data augmentation perspective to

combat data heterogeneity by incorporating physical knowl-

edge. Most existing IMU data augmentation approaches are

directly borrowed from other application domains (e.g., im-

ages or text processing [45, 46, 60]) without considering

and exploiting the physics of inertial sensing, which can

lead to harmful results when improperly adopted. We thor-

oughly study a variety of IMU data augmentation methods

and classify them into three categories based on their rela-

tions with underlying physical processes: complete - which
fully aligns with physics, approximate - which captures un-

derlying physics but with approximate formulations, and

flaky - which is not supported by the physical process and

may undermine data distribution. The data augmentation

with physical priors does not introduce extra labeling over-

head and would generalize data distributions. We refer to

this technique as Physics-Informed Data Augmentation, as
opposed to the conventional data plane approaches that dis-

regard underlying physical processes.

By applying the carefully designed data augmentation

approaches, this paper presents UniHAR, a universal HAR

framework that extracts generalizable activity-related repre-

sentations from heterogeneous IMU data. UniHAR comprises

two stages as shown in Figure 1 - i) self-supervised learning

for feature extraction with massive unlabeled data from all

users, and ii) supervised training for activity recognition

with limited labeled data from the source users. Catering

to the nature of different augmentation methods, UniHAR

only applies complete data augmentation during the feature

extraction stage to align data distributions from various user

groups. On the other hand, both complete and approximate

data augmentations are applied during the supervised train-

ing stage to increase data diversity for better generalization.

In practical applications, UniHAR is a configurable frame-

work that can adapt to two scenarios, i.e., data-decentralized
and data-centralized scenarios. In the data-decentralized sce-

nario where raw data transmission is not encouraged, as

illustrated in Figure 1, UniHAR integrates self-supervised

and federated learning techniques to train a generalized fea-

ture extraction model. UniHAR then constructs an activity

recognition model using limited but augmented labeled data.

The recognition model is distributed to all users for activity

inference without additional training. In the data-centralized

scenario, where raw data transmissions from target users are

possible, UniHAR can further leverage adversarial training

techniques for improved performance.

For experiment evaluation, different from previous works

[11, 12, 15, 27, 33, 40, 47, 52, 62–64], UniHAR is fully proto-

typed on the mobile platform. The client is deployable on

Android devices, which supports real-time model training

and inference with locally collected data. We conduct ex-

tensive experiments with four open datasets by transferring

models across datasets, i.e., the activity recognition mod-

els are trained with activity labels from only one dataset

and then applied to the other three datasets without activity

labels. To the best of our knowledge, such a level of hetero-

geneity involved in the experiment settings has not been

investigated in existing studies. The results show UniHAR

achieves an average HAR accuracy of 78.5% as compared

to <62% achieved by extending any existing solutions as al-

ternatives. When the raw data transmissions are allowed

in the data-centralized scenario, UniHAR can achieve 82.5%

average accuracy as compared to <72% achieved with state-

of-the-art solutions. The key contributions of this paper are

summarized as follows:

• We consider a practical and challenging HAR scenario,

where models trained from a small group of source

users are adopted across massive target users with

realistic adoption overhead.

• We present a thorough and comprehensive analysis of

IMU data augmentation methodology and character-

ize physics-informed data augmentation based on the

underlying physics of IMU sensing.

• We identify a novel approach that organically inte-

grates different data augmentation methods into a

self-supervised learning framework to address data

heterogeneity.

• We fully prototype UniHAR on the standard mobile

platform and evaluate its generalization with practi-

cal experiment settings across different datasets. The

source codes are publicly available
1
.

1
https://dapowan.github.io/wands_unihar/

https://dapowan.github.io/wands_unihar/


Practically Adopting Human Activity Recognition ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Cross-Dataset Transfer Cases
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(a) Across dataset HAR. (b) Data visualization.

Figure 2: Impact of real-world diversities. (a) The per-
formance of domain adaptation models transferred
from the UCI (U) to other datasets (H,M,S) in Table 2.
(b) Solid dots and circles represent samples of the UCI
and MotionSense datasets, respectively.

2 MOTIVATION
2.1 Data Heterogeneity
The different users, devices, placements, and environments

cause data diversity for body-worn IMU-based HAR applica-

tions [16, 50, 61, 62]. Most existing works [11, 12, 15, 27, 40,

47, 52, 62–64] overlook the heterogeneity problem andwould

underperform in practice. Only a few domain adaptation-

based works [4, 17, 37, 65] aim at mitigating the impact of

certain aspects of diversity. To investigate how those ap-

proaches perform with such data heterogeneity, we adopt

HDCNN [17] and XHAR [65] to distinguish activity types

and examine their performance across datasets. We choose

two open datasets (i.e., UCI [38] and MotionSense [31]) with

details provided in Section 7, which are collected with differ-

ent user groups, placements, devices, and environments. The

two models are trained to transfer from the UCI dataset to

the other three datasets. The detailed settings are provided in

Section 7.1. As shown in Figure 2(a), the two models can han-

dle the diversity in the original dataset and achieve nearly

100% classification accuracy. However, when applied across

datasets, they suffer from significant performance degrada-

tion. Similarly, ASTTL as reported in [37] only yields an

average accuracy of 66.3% when transferred across datasets.

In summary, there exists a gap in addressing the data hetero-

geneity when adopting HAR in practice.

To investigate why the models do not perform well in the

experiment, we select the common activity types of the two

datasets and visualize the raw IMU reading with t-distributed

Stochastic Neighbor Embedding (t-SNE) [56] in 2D space.

The raw data have the same sampling rate and window size.

Figure 2(b) clearly suggests that the IMU data of the same ac-

tivity type are totally mismatched between the two datasets.

Existing works [17, 65] may fail to handle the significant

data distribution gap and thus cannot achieve satisfactory

performance in cross-dataset HAR.

Figure 3: Performance of different data augmentation
methods. The "R", "N", "F" and "P" denote rotation,
noising, flipping, and permutation. Two letters repre-
sent the combination of twomethods and "ALL" is the
combination of all methods.

2.2 IMU Data Augmentation
Being targeted to improving the diversity and size of training

data to prevent overfitting, data augmentation has been a

commonly employed technique in various application do-

mains [45, 46, 59, 60]. Prior studies [4, 36, 40, 52, 55, 57]

directly borrow such a technique and apply many augmen-

tation methods on IMU data for improved performance, e.g.,

adding random noise, rotation, flipping, etc. However, it re-

mains unclear how effective these methods from other appli-

cation domains are in handling IMU data heterogeneity. To

this end, we apply some classical data augmentation methods

to augment data from the UCI dataset as an example.We then

train two widely adopted deep learning classifiers, i.e., the

GRU [62] and CNN [63] classifiers, with the augmented data

and test their performance on the MotionSense dataset. Our

results presented in Figure 3 indicate that many data aug-

mentation methods do not improve the cross-dataset HAR

performance of the two classifiers. Some methods, such as

noising (N) and flipping (F), even negatively impact the end

performance. These findings show that many IMU data aug-

mentation methods may not effectively increase IMU data

diversity and prevent trained models from overfitting.

As our experimental results suggest, although data aug-

mentation for images or text has been well-established [45,

46, 59, 60], a blind adoption of those may not work for IMU

data. This is because IMU sensor readings are observations

of the underlying physical states of device movement, e.g.,

the device orientation. Conventional data augmentation like

flipping does not consider IMU sensing physics and directly

applying it to IMU data may generate readings that do not

adhere to underlying sensing principles. Such unconstrained

data generation may lead to biased or even wrong data dis-

tributions and as a result degrade the performance of trained

models. It remains a challenge to design effective IMU data

augmentation approaches and appropriately adopt them to

improve model performance.
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Figure 4: UniHAR overview.

The virtual IMU technique [19, 20] aims at converting

videos of human activity into virtual streams of IMU mea-

surement to augment the training data, which follows le-

gitimate physical processes. Virtual IMU, however, requires

additional sensing information, including activity videos and

the on-body position of the device, to reconstruct the phys-

ical states of devices and thus generate virtual IMU data.

It cannot be generally applied when the additional camera

sensing modality is not available.

2.3 Experiment Setting
We also notice that the experiment settings of most existing

studies [4, 5, 11–13, 15, 17, 27, 32, 41, 42, 47, 50, 52, 52, 62–

65] are still not practical - the proposed HAR models are

primarily evaluatedwith single IMU datasets. Although some

works [4, 40, 41, 52, 62] employ multiple datasets, models

are evaluated on individual datasets separately and no cross-

dataset evaluation is presented. The data from single datasets

can be highly biased in various ways, e.g., different users and

devices, on-body positions, and environments. As suggested

by the results in Figure 2(a), the evaluation results with a

single dataset may not generalize across variable datasets,

which however is essential for practical adoptions. In this

paper, all identified approaches are systematically evaluated

by transferring from one dataset to multiple other datasets

in order to investigate their generalizability, which to the

best of our knowledge is the first time.

3 UNIHAR OVERVIEW
3.1 Problem Definition
We consider an HAR framework consisting of a cloud server

and a number of clients (users). As shown in Figure 1, each

client has a local IMU dataset collected by single or multiple

mobile devices. The cloud server has some initial datasets

shared by a small group of clients (the source users in Figure

1), which are defined as source domain D𝑆 = {𝑿𝑠
𝑖 }
𝑛𝑠
𝑖=1

. The

local datasets of other clients (the target users) are defined

as the target domain D𝑇 = {𝑿𝑡
𝑖 }
𝑛𝑡
𝑖=1

. The 𝑿𝑠
𝑖 or 𝑿

𝑡
𝑖 ∈ R𝐹×𝑀

represents one IMU sample, where 𝐹 is the number of sensor

features and𝑀 is the number of IMU readings. Only a small

fraction of D𝑆 is annotated with activity labels, denoted as

D𝐿 = {𝑿 𝑙
𝑖 , 𝑦

𝑙
𝑖 }
𝑛𝑙
𝑖=1

. The D𝐿 may be biased to a limited num-

ber of combinations of {device, placement, user, environment}.
Mobile clients can communicate with the cloud server and

exchange necessary information (e.g., trained models). The

objective of the framework is to achieve high activity recog-

nition accuracy for the clients in the target domain.

3.2 Overview
As depicted in Figure 4, UniHAR has two training stages:

■ Feature Extraction. All local unlabeled datasets are first
augmented to align the distributions of heterogeneous data

from various clients. To construct a generalized feature ex-

tractor (i.e., the encoder), the cloud server collaborates with

all mobile clients to exploit massive augmented unlabeled

data. The encoder and decoder are trained on clients individu-

ally, which learn the high-level features using self-supervised

learning techniques. The cloud server combines local models

and obtains a generalized model. In a nutshell, the whole

process aims at solving the following problem:

𝑤∗ = arg min

𝑤

ℓ𝑟 (𝑤 ;D𝑆 ,D𝑇 ), (1)

where ℓ𝑟 denotes the loss function and𝑤 denotes the weights

of the encoder and decoder.
■ Activity Recognition. Based on the generalized encoder,

the server then adopts a small amount of labeled data from

source users and trains an activity recognition model. Data

augmentation is also integrated to enrich the diversity of

labeled data and narrow the distribution gap between the

source and target domains. The activity recognizer, includ-

ing encoder, refiner, and classifier, jointly learn to recognize

activity types of labeled IMU data. The training process can

be represented by

𝑐∗ = arg min

𝑐

ℓ𝑐 (𝑤∗, 𝑐;D𝐿), (2)

where ℓ𝑐 denotes the loss function and 𝑐 represents the

weights of the activity recognizer. After the server dispatches

the recognizer, each client utilizes it to classify activities with-

out additional training.

4 PHYSICS-INFORMED DATA
AUGMENTATION

To mitigate the data heterogeneity, UniHAR enriches the

IMU data diversity based on physical knowledge and assists

the learning of generalizable features.
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Figure 5: Physics-informed IMU data augmentation.

4.1 Physical Sensing Models
UniHAR augments both accelerometer and gyroscope sensor

readings, which provide more modality information for HAR

[33, 62]. The measured acceleration is defined as

𝒂 = 𝑆𝑎 ( 𝒒, 𝒍,𝒈 ) = 𝒒∗ ⊗ (𝒍 + 𝒈) ⊗ 𝒒, (3)

where 𝒍 and 𝒈 denote the acceleration caused by the move-

ment of the device and gravity in the global frame, respec-

tively. The unit quaternion 𝒒 represents the orientation of

the device which is the rotation from the global frame to

the local (body) frame. The 𝒒∗ is the conjugation of 𝒒 and

⊗ is the Hamilton product. The acceleration reading 𝒂 is a

rotated vector of the addition of 𝒍 and 𝒈 in the local frame.

The gyroscope measures the angular velocity 𝝎 that can be

used to derive the change of orientation 𝒒 by the formula
2

as follows:

𝒒𝒕 = 𝒒𝒕−1 +

∆𝑡

2

𝒒𝒕−1 ⊗ 𝝎𝒕 , (4)

where ∆𝑡 is a small value, e.g., 0.01s, denoting the sampling

interval between 𝒒𝒕 and 𝒒𝒕−1. By transforming Equation (4),

the sensing model of angular velocity is

𝝎𝒕 = 𝑆𝜔 ( 𝒒,∆𝑡 ) =

2

∆𝑡
𝒒∗𝒕−1 ⊗ (𝒒𝒕 − 𝒒𝒕−1). (5)

4.2 Data Augmentation Model
In this paper, we propose a general model for IMU data

augmentation as indicated in Figure 5. The 𝒒, 𝒍 , 𝒈, and ∆𝑡 are

underlying physical states of the device, and sensor readings

𝒂 and 𝝎 are observations from the physical states:

( 𝒒, 𝒍,𝒈 )

𝑆𝑎−→ 𝒂, ( 𝒒,∆𝑡 )

𝑆𝜔−→ 𝝎, (6)

where 𝑆𝑎 and 𝑆𝜔 indicate the accelerometer and gyroscope

sensing models, respectively. In practice, the 𝒒 and 𝒍 are
typically unknown (dashed circles in Figure 5) while other

physical states and observations are known (solid circles in

2
Note that Equation (4) is an approximation formula but studies [30, 39, 48]

have shown that it works well in practice when ∆𝑡 is small.

Figure 5). A data augmentation is a mapping 𝐹 (·) that trans-
forms observations from the original space to the augmented

space:

( 𝒂,𝝎 )

𝐹−→ ( 𝒂′,𝝎 ′
), (7)

We introduce the concept of physical embedding 𝐺(·) to align
the mapping 𝐹 (·) between observations with the underlying

physical principles, which is defined as:

Definition 1. 𝐺(·) is a physical embedding of 𝐹 (·) if 𝐺(·)
transforms physical states by

( 𝒒, 𝒍,𝒈,∆𝑡 )

𝐺−→ ( 𝒒′, 𝒍 ′,𝒈′,∆𝑡 ′ ), (8)

such that the observations from the transformed physical states
equal the augmented observations of 𝐹 (·):

( 𝒒′, 𝒍 ′,𝒈′
)

𝑆𝑎−→ 𝒂′, ( 𝒒′,∆𝑡 ′ )
𝑆𝜔−→ 𝝎 ′. (9)

In practice, a mapping 𝐹 (·) that has a physical embed-

ding 𝐺(·) indicates the transition of readings can take place

through a physical process in reality. In this paper, we thus

define three types of data augmentation based on the above

mathematical model:

• Complete data augmentation, where its mapping

𝐹 (·) is connected with a physical embedding𝐺(·), and
𝐹 (·) can be fully formulated with original observations

and known physical states.

• Approximate data augmentation, where its map-

ping 𝐹 (·) is connected with a physical embedding 𝐺(·),
but 𝐹 (·) involves unknown physical states and can be

approximated by a formulation of known states.

• Flaky data augmentation, where we cannot find a

physical embedding 𝐺(·) to support its mapping 𝐹 (·).
In this paper, we refer complete and approximate data aug-

mentations to physics-informed data augmentations, which
both have underlying support of physical embeddings. In

the following, we characterize each of the three data aug-

mentation types based on which we develop more effective

augmentation adoption strategies that are grounded in the

physical principles of IMU sensing.

4.2.1 Complete data augmentation. This type of data aug-
mentation accurately generates augmented observations us-

ing the known physical states and original observations. We

elaborate on a few instances.

Acceleration normalization. Accelerometer and gyro-

scope readings usually have different distributions. The range

difference may affect the performance of deep learning mod-

els [62]. A simple method is to narrow the difference by

normalizing accelerometer readings with the gravity (9.81

𝑚/𝑠2
), i.e, 𝒂′ = 𝐹 (𝒂) =

𝒂
∥𝒈 ∥ . There exists a physical embed-

ding 𝒍 ′ = 𝐺(𝒍) =
𝒍
∥𝒈 ∥ , 𝒈

′
= 𝐺(𝒈) =

𝒈
∥𝒈 ∥ . Other physical states
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including orientation 𝒒 and time interval ∆𝑡 remain the same.

The acceleration of transformed physical states is

𝑆𝑎 ( 𝒒′, 𝒍 ′,𝒈′
) = 𝒒′∗ ⊗ (𝒍 ′ + 𝒈′

) ⊗ 𝒒′

= 𝒒∗ ⊗ (

𝒍 + 𝒈

∥𝒈∥ ) ⊗ 𝒒 =

𝒂

∥𝒈∥ = 𝒂′. (10)

The 𝐹 (𝒂) only involves the known physical state 𝒈, so accel-

eration normalization is a complete data augmentation.

Local rotation. The placement diversity causes signif-

icant differences in triaxial distributions of IMU data. To

simulate the IMU data collected from different device ori-

entations, this augmentation applies an extra rotation to

the device and augments orientation in the local frame by

𝒒′ = 𝐺(𝒒) = 𝒒 ⊗ ∆𝒒, where ∆𝒒 is generated rotation and

known. The observations of transformed physical states are

𝑆𝑎 ( 𝒒′, 𝒍 ′,𝒈′
) = (𝒒 ⊗ ∆𝒒)

∗ ⊗ (𝒍 ′ + 𝒈′
) ⊗ (𝒒 ⊗ ∆𝒒)

= ∆𝒒∗ ⊗ 𝒒∗ ⊗ (𝒍 + 𝒈) ⊗ 𝒒 ⊗ ∆𝒒 (11)

= ∆𝒒∗ ⊗ 𝒂 ⊗ ∆𝒒,

𝑆𝜔 ( 𝒒′,∆𝑡 ′ ) =

2

∆𝑡
(𝒒 ⊗ ∆𝒒)

∗ ⊗ (𝒒𝒕 ⊗ ∆𝒒 − 𝒒𝒕−1 ⊗ ∆𝒒)

=

2

∆𝑡
∆𝒒∗ ⊗ 𝒒∗ ⊗ (𝒒𝒕 − 𝒒𝒕−1) ⊗ ∆𝒒 (12)

= ∆𝒒∗ ⊗ 𝝎 ⊗ ∆𝒒.

The 𝐹 (·) can be designed with 𝒂′ = 𝐹 (𝒂) = ∆𝒒∗ ⊗ 𝒂 ⊗ ∆𝒒
and 𝝎 ′

= 𝐹 (𝝎) = ∆𝒒∗ ⊗𝝎 ⊗∆𝒒. The augmented observations

can be derived from original observations and known ∆𝒒,
so local rotation is a complete data augmentation. The local

rotation significantly diversifies the triaxial distributions of

the original readings and maintains other human motion

information, e.g., the magnitude and the fluctuation pattern.

Dense sampling. Existing studies [5, 17, 40, 50, 62, 64, 65]
simply divide IMU readings using low overlapping rates (e.g.,

zero or 50% overlapping) and as a result underutilize the

data. To fully use the collected IMU data, higher overlapping

rates with dense sampling may be adopted. The rationale

is that most daily activities are periodic, which means any

time can be viewed as the start of the motion. Dense sam-

pling shifts observations along the temporal dimension by

𝒂′𝒕 = 𝐹 (𝒂) = 𝒂𝒕+𝒏, 𝝎 ′
𝒕 = 𝐹 (𝝎) = 𝝎𝒕+𝒏, where 𝑛 is a random

value. The augmented observations are partitioned with a

fixed window and then put into HAR models for training,

which can enlarge the number of training samples with ex-

isting sensor readings. Its physical embedding is shifting the

physical states by 𝑛 accordingly, e.g., 𝒍 ′𝒕 = 𝐺(𝒍) = 𝒍𝒕+𝒏. The
𝐹 (·) does not require unknown physical states and dense

sampling is also a complete data augmentation.

4.2.2 Approximate data augmentation. This type of data aug-
mentation has its physical embedding, but the augmented

observations depend on the approximation of original obser-

vations or known physical states.

Linear Upsampling. IMU data are discrete signals and

upsampling can enrich data samples. The linear upsampling

interpolates physical states by 𝒒′
𝒕

= 𝐺(𝒒) = 𝛼𝒒𝒕 + (1 − 𝛼)𝒒𝒕−1
and 𝒍 ′

𝒕
= 𝐺(𝒍) = 𝛼 𝒍𝒕 + (1 − 𝛼)𝒍𝒕−1, where 𝛼 is a value within

[0, 1] and 𝑡 = 𝛼𝑡 + (1 − 𝛼)(𝑡 − ∆𝑡 ) = 𝑡 − (1 − 𝛼)∆𝑡 . The

corresponding augmented observations are

𝑆𝑎 ( 𝒒′, 𝒍 ′,𝒈′
) = 𝒒′

𝒕
∗ ⊗ (𝒍 ′

𝒕
+ 𝒈) ⊗ 𝒒′

𝒕
, (13)

𝑆𝜔 ( 𝒒′,∆𝑡 ′ ) =

2

∆𝑡
𝒒∗
𝒕−1 ⊗ (𝒒𝒕 − 𝒒𝒕−1), (14)

both involving unknown physical states 𝒒 and 𝒍 . Linear up-
sampling is an approximate data augmentation and its aug-

mented observations can be approximated as

𝒂′ = 𝑆𝑎 ( 𝒒′, 𝒍 ′,𝒈′
) = 𝒒′

𝒕
∗ ⊗ (𝛼 𝒍𝒕 + (1 − 𝛼)𝒍𝒕−1 + 𝒈) ⊗ 𝒒′

𝒕

= 𝛼𝒒′
𝒕
∗ ⊗ (𝒍𝒕 + 𝒈) ⊗ 𝒒′

𝒕
+ (1 − 𝛼)𝒒′

𝒕
∗ ⊗ (𝒍𝒕−1 + 𝒈) ⊗ 𝒒′

𝒕

≈ 𝛼 𝒒∗𝒕 ⊗(𝒍𝒕 + 𝒈) ⊗ 𝒒𝒕 + (1 − 𝛼) 𝒒∗𝒕−1 ⊗(𝒍𝒕−1 + 𝒈) ⊗ 𝒒𝒕−1

= 𝛼𝒂𝒕 + (1 − 𝛼)𝒂𝒕−1, (15)

𝝎 ′
= 𝑆𝜔 ( 𝒒′,∆𝑡 ) =

2

∆𝑡
𝒒∗
𝒕−1 ⊗ (𝛼(𝒒𝒕 − 𝒒𝒕−1) −

(1 − 𝛼)(𝒒𝒕−1 − 𝒒𝒕−2))

≈ 2𝛼

∆𝑡
𝒒∗𝒕−1 ⊗(𝒒𝒕 − 𝒒𝒕−1) +

2(1 − 𝛼)

∆𝑡
𝒒∗𝒕−2 ⊗(𝒒𝒕−1 − 𝒒𝒕−2)

= 𝛼𝝎𝒕 + (1 − 𝛼)𝝎𝒕−1, (16)

where 𝒒′
𝒕
approximately equals to 𝒒𝒕−1 or 𝒒𝒕 if ∆𝑡 is small.

Linear upsampling enlarge the size of data but introduces

approximation errors.

Time wrapping. A same type of activities may vary in

duration across users due to distinct behavioral patterns. To

mitigate the temporal divergence, time wrapping accelerates

or decelerates changes of physical states in the temporal

dimension, e.g., 𝒒′𝒕 = 𝐺(𝒒) = 𝒒𝒌∗𝒕 , where 𝑘 is a scaling factor

usually chosen within [0.8, 1.2]. The augmented observations

are accordingly stretched in the temporal dimension, e.g.,

𝒂′𝒕 = 𝐹 (𝒂) = 𝒂𝒌∗𝒕 . To facilitate such a transformation, time

wrapping adopts linear upsampling to obtain continuous

observations. Therefore, time wrapping is also approximate

data augmentation, which enhances temporal diversity and

also with approximation errors.

4.2.3 Flaky data augmentation. We find many IMU data

augmentation methods, although widely adopted in existing

works [4, 36, 40, 52, 55, 57], do not have their physical em-

beddings. For example, some data augmentations randomly

negate observations [36, 40, 52] or reverse the observations

along the temporal dimension [36, 40, 52]. The permutation

[36, 40, 52, 55] slices the observations sequence within a

temporal window and randomly swaps sliced segments to

generate a new sequence. The shuffling [36, 40, 52] randomly
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Figure 6: Adoption of data augmentations.

rearranges the channels of sensor observations to change the

triaxial distribution. These methods may not be associated

with the underlying physical principles.

The jittering [36, 40, 52, 55] that adds additional random

noise to the original observations is a special flaky data aug-

mentation. It aims at augmenting the sensor model by intro-

ducing the sensor noises. But the applied noise distributions

may not match the true distributions, which vary across

different devices and are hard to determine [50].

Flaky data augmentations only operate with IMU observa-

tions and are not explainable with the underlying physical

process. The adoption of them may lead to unbounded errors

in the generated data distributions.

4.3 Data Augmentation Adoption
UniHAR incorporates physics-informed data augmentation
methods differently during the two stages of the framework

based on their respective characteristics and Figure 6 explains

the rationale.

During the feature extraction stage, although unlabeled

data are abundant, they are from different users, devices,

and environments, which are subject to significant domain

shift. The purpose of incorporating data augmentation is

to generalize the data distributions and improve the inter-

domain data representativeness (as illustrated in the top of

Figure 6). On the other hand, it is challenging to control

the data quality when approximation errors are introduced

at scale. Therefore, UniHAR only employs complete data

augmentations to unlabeled data in this stage.

During the activity recognition stage, labeled data from

the source domain are utilized but they are scarce. In addition

to aligning the data distributions across domains, the data

augmentation is also expected to enrich the source domain

labels and improve the intra-domain data representativeness

(as illustrated in the bottom of Figure 6). Since supervised

training with labels is more robust to errors [3], a wider

range of data augmentation methods can be integrated and

UniHAR applies both complete and approximate data aug-

mentation to augment labeled data in this stage.

Flaky data augmentations are prohibited throughout the

entire training process because they may lead to completely

wrong data distributions. We thoroughly investigate the ef-

fect of data augmentation methods with experiments and

show how their varied usage can either improve or deterio-

rate model performance in Section 7.4.

5 UNIHAR ADOPTION
Putting UniHAR to practical adoption, we consider two ap-

plication scenarios and make further optimizations for im-

proved performance.

5.1 Data-decentralized Scenario
In the data-decentralized scenario, the raw data transmis-

sion from the target users to the cloud server is supposed

not allowed due to practical constraints, e.g., prohibitive

processing and transmission overheads or privacy concerns.

5.1.1 Feature extraction. To extract effective features from

local unlabeled datasets, UniHAR adopts self-supervised

learning to train the encoder and decoder. There are sev-

eral state-of-the-art self-supervised representation models

[12, 40, 52, 62] for IMU data. However, many methods [12, 40,

52] are entangled with data augmentation and flaky data aug-

mentation methods are integrated, which we believe may

harm the end performance. We identify LIMU-BERT [62]

as an effective foundation model for IMU-based sensing,

and embed it into our design to build the representation

model. LIMU-BERT is orthogonal to the data augmentation

employed in UniHAR.

We employ acceleration normalization and local rotation

for data augmentation, both being complete data augmenta-

tion. As shown in Figure 4, the encoder and decoder jointly

predict the original values of the randomly masked IMU

readings. By the reconstruction task, the encoder learns the

underlying relations among IMU data and extracts effec-

tive features. The Mean Square Error (MSE) loss is used to

compute the differences between the original and predicted

values, which is defined as follows:

ℓ𝑟𝑒𝑐 (𝑤 ;𝑿 ) =

1

|𝑿 |

|𝑿 |∑
𝑖=1

𝑗 ∈𝑀 [𝑖]∑
𝑗

MSE (�̂�
[𝑖]

· 𝑗 − 𝑿
[𝑖]

· 𝑗 ), (17)

where𝑤 denotes the model weights of the encoder and de-

coder, and𝑀 [𝑖]
represents the set of the position indices of

masked readings for the 𝑖-th IMU sample 𝑿 [𝑖]
. The �̂�

[𝑖] ∈
R𝐹×𝑚 denotes the predicted data as shown in Figure 4.
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To avoid the transmission of raw data, UniHAR integrates

a federated learning structure to collaborate with all mobile

clients and train a more generalized feature extraction model.

UniHAR aggregates local models from all clients and obtains

a general global model as shown in Figure 4 (green part). In

each round of training, the cloud server distributes the latest

global model to the clients, which then make use of their

individual local datasets to update the model with the ℓ𝑟𝑒𝑐
defined in Equation (17) for 5 epochs. There are two potential

options to aggregate local models: aggregating gradient and

aggregating model weights [24]. Our experiments show that

the latter does introduce less bias to the clients with more

samples and achieves better overall performance. Therefore,

the server aggregates local models with weights defined

as the ratio of the number of samples at each client to the

total number of samples, which can be expressed as𝑤𝑔 ←∑𝐾
𝑘=1

𝑛𝑘
𝑛
𝑤𝑘
𝑙
. The𝑤𝑔 and𝑤𝑙 denote the parameters of global

and local models, respectively. The aggregation weight
𝑛𝑘
𝑛

is the ratio of the number of samples at the 𝑘-th client to

the total number of samples 𝑛. The process repeats until the

global model converges.

To optimize the training process, UniHAR initializes the

weights of the encoder and decoder trained with the source

domain data such that each mobile client can fine-tune the

models with fewer epochs.

5.1.2 Activity recognition. Based on the encoder trained

with massive unlabeled data, the server exploits the aug-

mented labeled data from the source users and trains an

activity recognizer. Figure 4 gives the workflow in training

the recognizer. In addition to acceleration normalization and

local rotation, UniHAR further applies dense sampling and

time wrapping to augment the source domain labeled data.

To control the approximation errors, time wrapping is ap-

plied with a probability of 0.4 which is fine-tuned based on

our empirical experiments. A refiner is designed to distill the

representations and extract activity-specific features. The

classifier is trained to recognize activity types with refined

features. The training loss is defined as follows:

ℓ𝑎𝑐𝑡 (𝑤, 𝑟, 𝑐;𝑿 ) =

1

|𝑿 |

|𝑿 |∑
𝑖=1

CE (𝑦[𝑖], 𝑦[𝑖]
), (18)

where ℓ𝑎𝑐𝑡 is defined with the Cross-Entropy (CE) loss, 𝑟 and

𝑐 represent the weights of the refiner and classifier, respec-

tively. The 𝑦[𝑖]
and 𝑦[𝑖]

are the estimated softmax probability

and corresponding ground truth. Note that the encoder is

fine-tuned according to ℓ𝑎𝑐𝑡 during training.

In UniHAR, the refiner contains two Gated Recurrent Unit

(GRU) layers (bi-directional) with the same hidden sizes of

10 and the input size of 36. Only the hidden features at the

last position are input into the classifier, which consists of a

Figure 7: Workflow for training the recognizer in the
data-centralized scenario.

dropout layer with a drop rate of 0.5 and a fully-connected

layer with 10 units.

5.2 Data-centralized Scenario
We consider a second scenario where some target users may

share their unlabeled data with the cloud server for improved

HAR performance. In such a case, UniHAR is able to incor-

porate unsupervised learning techniques to design a more

sophisticated activity recognizer and further eliminate the

domain discrepancies. Specifically, UniHAR injects extra in-

formation, i.e., domain label specifying which domain the

IMU data belong to, into the activity recognizer training

process using adversarial domain adaptation techniques.

Figure 7 illustrates the workflow of the activity recogni-

tion stage in the data-centralized scenario. Both the source

and target domain data are augmented and then processed

by the encoder and refiner. The domain classifier learns to
distinguish the domain with the training loss

ℓ𝑑𝑜𝑚(𝑤, 𝑟, 𝑑 ;𝑿 ) =

1

|𝑿 |

|𝑿 |∑
𝑖=1

CE (𝑦
[𝑖]

𝑑
, 𝑦

[𝑖]

𝑑
), (19)

where 𝑦
[𝑖]

𝑑
and 𝑦

[𝑖]

𝑑
denote the predicted probability and ac-

tual domain label, respectively. The weights of the domain

classifier 𝑑 are updated with ℓ𝑑𝑜𝑚 while the encoder, refiner,

and activity classifier are trained with the mixed loss:

ℓ𝑚𝑖𝑥 (𝑤, 𝑟, 𝑐;𝑿 ) = ℓ𝑎𝑐𝑡 (𝑤, 𝑟, 𝑐;𝑿 ) − 𝛼 · ℓ𝑑𝑜𝑚(𝑤, 𝑟, 𝑑 ;𝑿 ), (20)

where 𝛼 is a weight set to 0.6. By minimizing ℓ𝑚𝑖𝑥 , the en-

coder and refiner are trained against the domain classifier

and thus capture domain-independent features, which fur-

ther mitigates the data heterogeneity issue.

The domain classifier contains two fully-connected layers

with the hidden and output size of 72 and 2, respectively.

The first fully-connected layer is followed by the Rectified

Linear Unit (ReLU) [2] activation function layer.
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Figure 8: UniHAR implementation.

6 IMPLEMENTATION AND SYSTEM
EVALUATION

UniHAR is fully prototyped on the mobile platform and Fig-

ure 8 illustrates the system designs for the mobile client and

the cloud server. The mobile client is an Android application

that supports real-time data collection and model training,

inference, and sharing. The sensor collector accesses IMU

sensors and saves readings as files implicitly. The model man-

ager implemented with TensorFlow lite [1] is then activated

to train the autoencoder (including the encoder and decoder)

with unlabeled data. The server aggregates all client encoders

in the encoder queue and trains the recognizer with labeled

data. All components are guided by the configuration data

(e.g., sampling rate and batch size) set by the admin website.

To avoid affecting the daily use of other applications, the

model manager is triggered only when the smartphone is

not actively used and is being charged.

The input sensor data are accelerometer and gyroscope

readings down-sampled to 20 Hz. The input window contains

20 readings. UniHAR defines the encoder and decoder [62]

with 𝑅𝑛𝑢𝑚 = 1, 𝐴𝑑𝑖𝑚 = 4, 𝐻𝑑𝑖𝑚 = 36, and 𝐹𝑑𝑖𝑚 = 72. The two

stages adopt the same learning rate and batch size, which

are 0.001 and 64, respectively. The recognizer is trained for

500 epochs. The model weights are updated with Adam [18]

optimizer. To evaluate the system overhead, we install the

client on a Samsung Galaxy S8 SM-G9500 (Octa-core CPU

and 4 GB RAM). The cloud server is deployed on a computer

equipped with an Intel(R) Core(TM) i9-9820X 3.30GHz CPU,

128 GB memory, and four NVIDIA GEFORCE 2080Ti GPUs.

Latency. Table 1 shows the latency of the autoencoder

and recognizer on the two platforms. The smartphone re-

quires 66ms and 25ms to train the autoencoder and infer

the recognizer for one batch of samples, respectively. The

first-time training and inference may take longer time, i.e.,

2.5s and 0.5s, respectively, which may be attributed to the

model file initialization process. The training time of the

recognizer is about 15 ms per batch on the server and the

Table 1: System Overhead.

Model Autoencoder Recognizer

Latency

Client train: 66ms infer: 25ms

Server aggre.: / train: 15ms

Size 62.6 KB 68.5 KB

Client

CPU 13% 11%

Memory 102 MB 93 MB

Energy light light

aggregation time depends on the number of autoencoders

shared by clients.

Communication overhead. The models are first initi-

ated with Tensorflow lite files on the client. The model

weights are exchanged in the format of Tensorflow check-

point files. The total communication overhead of the feder-

ated training process with 100 rounds for each client is about

18.9 MB (100 × 2 × 62.6 KB + 100 × 68.5 KB), which is easily

affordable with nowadays’s 4G/5G data bundles.

Computational overhead and energy consumption.
The Android Profiler [6] indicates that the training of au-

toencoder and inference of recognizer cause about 10% CPU

load and require about 100 MB memory on the Samsung

Galaxy S8. The energy usages are both below the level of

"light" defined by the Android Profiler.

In summary, UniHAR introduces low system overhead to

mobiles and the cloud server.

7 COMPARATIVE EVALUATION
To ensure direct and fair comparisons between UniHAR and

a variety of existing works with open datasets, we re-build

UniHAR and implement baseline models with Pytorch [35]

and emulate mobile clients that hold offline local datasets.

7.1 Experiment Setup
7.1.1 Datasets. We evaluate UniHAR with four publicly

available datasets, which have been widely used in previous

studies [40, 62–64]. These datasets cover a wide variety of

{user, device, placement, environment} combinations.

■ HHAR [50] contains accelerometer and gyroscope read-

ings from 9 users performing 6 different activities (sitting,
standing, walking, upstairs, downstairs, and biking) with 6

types of mobile phones (3 models of Samsung Galaxy and

one model of LG). All smartphones were carried by the users

around their waists. The dataset was collected in Denmark.

■ UCI [38] has raw accelerometer and gyroscope data with

30 volunteers aged from 19 to 48 years from Italy. The read-

ings of 6 basic activities (standing, sitting, lying, walking,
walking downstairs, and walking upstairs) were collected at
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50 Hz with a Samsung Galaxy S II carried on the waist.

■ MotionSense [31] dataset (abbreviated as Motion in our

paper) adopted an iPhone 6s to gather accelerometer and gy-

roscope time-series data. 24 participants from UK performed

6 activities (sitting, standing, walking, upstairs, downstairs,
and jogging) with the device stored in their front pockets.

All data were collected at a 50 Hz sampling rate.

■ Shoaib [44] et al. collected data of seven daily activities

(sitting, standing, walking, walking upstairs, walking down-
stairs, jogging, and biking) in the Netherlands. The 10 male

participants were equipped with five Samsung Galaxy SII

(i9100) smartphones placed at five on-body positions (right
pocket, left pocket, belt, upper arm, and wrist). The IMU read-

ings were collected at 50 Hz.

To demonstrate the effectiveness of UniHAR across di-

verse datasets, we select four common activities (i.e., still,
walk, walk upstairs, walk downstairs) contained in all four

open datasets. For still activity, we merge several similar

activities, for example, sit and stand in the HHAR dataset

into still. In addition to the diversity of {user, device, place-
ment, environment}, the merged dataset has general label

definitions (i.e., still). The activity distributions of the four

activities also differ in the four datasets.

7.1.2 Baseline models. We consider both data-decentralized

and data-centralized scenarios, and compare UniHAR with

relevant state-of-the-art solutions in each scenario. In the

data-decentralized scenario, we extend three most relevant

approaches as baselines:

■ DCNN [63] designs a CNN-based HAR model that out-

performs many traditional methods. It assumes labeled data

are abundant and adequately representative.

■ TPN [40] learns features from unlabeled data by recogniz-

ing the applied data augmentations. It only requires limited

data for training but with an implicit assumption that they

are not biased.

■ LIMU-GRU [62] learns representations by a self-supervised

autoencoder LIMU-BERT. It uses limited labeled data and

assumes unbiased data distributions.

In the data-centralized scenario, we compare UniHARwith

three existing unsupervised domain adaptation approaches.

■ HDCNN [17] handles domain shift by minimizing the

Kullback-Leibler divergence between the fully-labeled source

domain features and unlabeled target domain features.

■ FM [4] minimizes the feature distance across domains by

maximummean discrepancy [54]. It requires full supervision

with adequate labeled data from the source domain.

■ XHAR [65] is an adversarial domain adaptation model

and needs to select the source domain before adaptingmodels

to the unlabeled target domain.

The SelfHAR [52] and ASTTL [37] are not compared be-

cause SelfHAR inherits the training scheme from TPN, which

Table 2: Cross-dataset transfer setup.

Case

Souce Domain

with labels

Target Domain

without labels

1 HHAR UCI, Motion, Shoaib

2 UCI HHAR, Motion, Shoaib

3 Motion HHAR, UCI, Shoaib

4 Shoaib HHAR, UCI, Motion

is already selected as one of the baselines, and the perfor-

mance of ASTTL as originally reported in [37] is poor.

7.1.3 Cross-dataset evaluation. To demonstrate the gener-

alizability of UniHAR, we design four cross-dataset evalu-

ation cases and Table 2 indicates each of the cases, e.g., in

case 1, UniHAR transfers models from the HHAR dataset to

other three datasets without activity labels. The clients in

the source domain share a small portion of labeled data with

the cloud server, while the clients in the target domain only

contribute local unlabeled data. Each mobile client has a lo-

cal dataset containing the IMU data collected from the same

user and our setup has a total of 73 clients. Each local dataset

is partitioned into training (80%), validation (10%), and test

(10%) sets. The training sets of all clients participate in the

federated training process of the encoder and decoder. To

train the recognizer, we randomly select a small portion of la-

beled samples (i.e., 1,000) from the training sets in the source

domain. The validation sets are utilized to select models (e.g.,

the encoder and classifier) and the trained recognizers are

evaluated on the test sets in the target domain.

7.1.4 Metrics. We compare the performance of HARmodels

with average accuracy and F1-score of all users in the target

domain, which are defined as 𝑎 =

∑
𝑎𝑖 , 𝑓 =

∑
𝑓𝑖 , 𝑠 .𝑡 . 𝑖 ∈ D𝑡 ,

where 𝑎𝑖 and 𝑓𝑖 are the activity classification accuracy and

F1-score of the 𝑖-th user, respectively.

7.2 Overall Performance
Table 3 compares the performance of UniHAR and other base-

line models in the data-decentralized and data-centralized

scenarios. The two numbers in each cell denote average ac-

curacy and F1-score, respectively. The row of UniHAR-A

gives the performance of the UniHAR recognizer trained

with centralized target user data. In the data-decentralized

scenario, DCNN, TPN, and LIMU-GRU achieve poor per-

formance mainly because they overlook the data diversity

among the source and target domain users. In contrast, Uni-

HAR achieves 78.5% average accuracy and 67.1% F1-score,

which outperforms the best of three baselines by at least 15%.

For the data-centralized scenario, UniHAR-A also yields bet-

ter accuracies and F1-scores when compared with HDCNN,

FM, and XHAR in most cases. Although XHAR delivers the
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Table 3: Performance comparison. (The two numbers in each cell are accuracy and F1-score.)

Scenario Model

Cross-Dataset Transfer Case

Average

1 2 3 4

Data

Decentralized

DCNN 0.594, 0.438 0.583,0.373 0.628, 0.437 0.668, 0.465 0.618, 0.428

TPN 0.584, 0.361 0.530,0.281 0.541, 0.302 0.601, 0.350 0.564, 0.324

LIMU-GRU 0.306, 0.174 0.435, 0.178 0.353, 0.248 0.497, 0.337 0.398, 0.234

UniHAR 0.757, 0.611 0.785, 0.667 0.789, 0.704 0.810, 0.702 0.785, 0.671

Data

Centralized

HDCNN 0.557, 0.439 0.515, 0.233 0.487, 0.293 0.518, 0.376 0.524, 0.335

FM 0.386, 0.250 0.757, 0.507 0.410, 0.273 0.564, 0.369 0.539, 0.350

XHAR 0.648, 0.430 0.615, 0.433 0.733, 0.566 0.879, 0.777 0.719, 0.552

UniHAR-A 0.805, 0.674 0.833, 0.708 0.819, 0.731 0.824, 0.723 0.820, 0.709
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Figure 9: Accuracies with different numbers of labels.
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Figure 10: Effect of data augmentations.

best performance for case 4, it is shown to be sensitive to

the source domain dataset and falls much lower in other

cases. UniHAR-A, however, achieves accuracies consistently

higher than 80.0% across all cases and in average outperforms

the best of the three by 10% in terms of accuracy and 15%

in terms of F1-score. In summary, the results demonstrate

the outstanding performance of UniHAR(-A), credited to the

effective data augmentations and feature extraction.

7.3 Impact of Labeled Sample Size
We then investigate how UniHAR and the baseline models

perform with different amount of labeled samples. We vary

the size of labeled samples from 50 to 1,400. Figure 9 plots

the average accuracies achieved in data-decentralized and

data-centralized scenarios, respectively. The error bar rep-

resents the standard deviation of the accuracies over the

four cross-dataset evaluation cases. The results suggest that

UniHAR outperforms other models in all cases by at least

10% in accuracy (and up to 20% in the data-decentralized

scenario). Since HDCNN, TPN, and LIMU-GRU are prone to

overfitting to the source domain, their performances on the

target domain are not very related to the number of labeled

samples from the source domain. On the other hand, the

models in the data-centralized scenario can achieve higher

accuracies when more labeled data are employed. UniHAR-A

consistently outperforms the other two models in the data-

centralized scenario. The UniHAR(-A) is able to achieve aver-

age accuracies of 71.0% and 72.1% in the two scenarios, when

only 50 labeled samples are used. The experiment results

also suggest a more robust performance of UniHAR(-A).

7.4 Effect of Data Augmentation
We devise an ablation study to evaluate how different data

augmentation methods are effective in supporting the train-

ing objective. Figure 10 compares the performance of Uni-

HAR and baseline models in both data-decentralized and

data-centralized. It is shown that the accuracies of all models

increase when integrating with the proposed data augmen-

tation methods. Although UniHAR(-A) may lower accuracy

when data augmentation is not employed, its training archi-

tecture fully exploits the potential of data augmentation with

the whole learning framework and eventually outperforms

the best baseline models by 10% in both scenarios.
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Figure 11: Impact of data augmentation combinations.
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Figure 12: Accuracies of pretraining approaches.

we then examine how effective is the proposed way of

integrating complete and approximate data augmentation

in UniHAR. We compare the three choices of i) using only

complete data augmentation, ii) using both complete and

approximate data augmentation, and iii) using all including

flaky data augmentations, and during both the feature ex-

traction and activity recognition stages. Figure 11 plots the

achieved accuracies in the data-decentralized scenario. Re-

sults show that if approximate data augmentation is adopted

in the feature extraction stage, it may lead to an accuracy

drop of 2.0% because of the approximation errors introduced

to massive unlabeled data. On the other hand, applying ap-

proximate data augmentation in the activity recognition

stage can further enrich data diversity and thus increase

accuracy by 1.9%. Flaky data augmentation, however, only

introduces a negative impact to almost all cases when applied

in either stage. The UniHAR performance drops by 5.7% on

average when data augmentation jittering and permutation

are applied. Our results with the data-centralized scenario

show similar results (omitted due to page limits).

We also investigate the detailed performance gains when

different data augmentation methods are adopted. The local
rotation introduces the largest gains, i.e., 19.4% and 15.3%

accuracy improvements in the two scenarios. The dense sam-
pling and time wrapping together improve the average accu-

racies by 2.6% and 2.3% in the two scenarios, respectively.

7.5 Effect of Feature Extraction
We evaluate the effectiveness of feature extraction by com-

paring the performance of three training approaches, i.e.,

without any pretraining, with self-supervised learning (only

available for the data-centralized scenario), and with both

self-supervised and federated learning (UniHAR pretrain-

ing). Figure 12 plots the end performance of different per-

taining approaches and the results show that the UniHAR

training approach consistently achieves better performance

in the data-decentralized scenario. For the data-centralized

scenario, although the self-supervised training slightly out-

performs the UniHAR training in case 4, it only achieves

an accuracy of 71.2% in case 2. It is because the encoder is

Table 4: Efficiency comparison.

Model Para. Size Train. Time Infer. Time

DCNN 17 K 76 KB 4.2 ms 0.8 ms

TPN 26 K 194 KB 7.6 ms 2.2 ms

LIMU-GRU 54 K 239 KB 8.1 ms 5.5 ms

HDCNN 28 K 118 KB 3.6 ms 0.8 ms

FM 50 K 203 KB 5.8 ms 2.9 ms

XHAR 700 K 2607 KB 17.0 ms 14.2 ms

UniHAR 15 K 78 KB 8.9, 17.6 ms 3.6 ms

sensitive to the number of samples [28], the recognizer with

the biased encoder degrades significantly in case 2, where

the source domain dataset UCI has the fewest samples. The

experiment suggests that UniHAR(-A) can achieve more ro-

bust performance with federated training. The encoder and

decoder are first initialized with the source domain dataset in

the feature extraction process, which gains a 1.5% improve-

ment in average accuracy. The possible reason is that mobile

clients can better adapt a good initialized model to their local

datasets [7].

7.6 Model Size and Latency
Table 4 compares UniHAR with the baseline models in terms

of the number of parameters, model size, training time, and

inference time. The models are optimized by lite Pytorch

Mobile [35]. The training time is the time the server takes

to train a mini-batch (64) of samples and the inference time

is the execution time for inferring one IMU sample on the

Samsung Galaxy S8. The two training time of UniHAR corre-

sponds to the models without and with the domain classifier.

In summary, the model size of UniHAR is small and its train-

ing and inference time is comparable with others.

8 RELATEDWORK
Wearable-based HAR systems [9, 10, 15, 17, 27, 37, 40, 64, 65]

are ubiquitous and low-cost. Conventional HAR models [15,

43, 47, 51, 58, 63] adopt deep neural networks and achieve

high performance with the help of sufficient well-annotated
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datasets. However, IMU data heterogeneity prevents them

from achieving promising performance in practice.

Recent federated learning schemes [21–23, 34, 53] allow

for distributed training without accessing raw data but they

require fully-labeled data at the target users, which cannot

be directly applied to the considered scenario.

Self-supervised learning works [14, 36, 40, 52, 57, 62] have

shown effectiveness in extracting useful features from unla-

beled data and thereby improving the performance of down-

stream HAR models. For example, the encoder models from

TPN [40] and LIMU-BERT [62] may be viewed as the early

efforts in building "foundation" models to extract contextual

features from unlabeled IMU data, with which task-specific

models can achieve superior performances with limited la-

beled data. However, these models still require some labeled

data to train HAR classifiers, which can be overfitted to spe-

cific domains and fail to achieve high performance for target

users without any labeled data.

Unsupervised domain adaptation approaches have been

introduced to HAR applications [17, 37, 65] and reduce the

distribution divergence between different domains. Specif-

ically, HDCNN [17] learns transferable features by mini-

mizing Kullback-Leibler divergence between the source and

target domains. XHAR [65] extracts domain-independent fea-

tures by adversarial training. Unfortunately, our experiments

demonstrate that purely learning-based domain adaptation

approaches fail to handle highly heterogeneous IMU data

across domains and cannot achieve satisfactory performance

in adapting models across different user groups.

Prior works [49, 55] devise a range of IMU data augmenta-

tion methods, e.g., random noising, to increase label size and

prevent overfitting to specific domains. And recent studies

[36, 40, 52, 57] have explored self-supervised learning with

data augmentation techniques for leveraging unlabeled data.

However, many flaky data augmentations have been adopted

in those studies [36, 40, 49, 52, 55, 57], which may generate

readings that do not conform to the physical sensing princi-

ples and undermine the data distributions.

Different from existing studies, UniHAR aims at building

a general HAR framework, in which a representation model

is first built with massive unlabeled data, and supervised

training with limited labeled data is thereafter adopted to

adapt the model across user domains. UniHAR specifically

explores physics-informed data augmentation that aligns

with the underlying physical process and constructively em-

beds them into different learning stages to improve both

intra-domain and inter-domain data representativeness.

9 DISCUSSION
Impact of orientation representation. The core idea of
the physics-informed data augmentation is general and the

existence of physical embedding is independent of represen-

tations. While quaternion is one of several possible ways to

represent the device orientation, augmentation with physi-

cal embedding can be expressed with other representations.

For example, we may also represent sensing models using

rotation matrices: 𝒂 = 𝑹−1
(𝒍 +𝒈),𝝎 = 𝑓 −1

𝑔 (𝑹−1

𝑡−1
𝑹𝑡 )/∆𝑡 , where

𝑹 is the rotation matrix representing the device orientation

and 𝑓 −1

𝑔 converts the rotation matrix to angular changes [48].

Taking local rotation as example, its physical embedding is

𝑹 ′ = 𝑹∆𝑹, and augmented readings are derived:

𝒂′ = (𝑹∆𝑹)
−1

(𝒍 + 𝒈) = ∆𝑹−1𝑹−1
(𝒍 + 𝒈) = ∆𝑹−1𝒂, (21)

𝝎 ′ = 𝑓 −1

𝑔 ((𝑹𝑡−1∆𝑹)
−1𝑹𝑡∆𝑹)/∆𝑡 = 𝑓 −1

𝑔 (∆𝑹−1𝑹−1

𝑡−1
𝑹𝑡∆𝑹)/∆𝑡

= 𝑓 −1

𝑔 (∆𝑹−1 𝑓𝑔(𝝎∆𝑡 )∆𝑹)/∆𝑡

= 𝑓 −1

𝑔 (∆𝑹−1 𝑓𝑔(𝝎)∆𝑹) = ∆𝑹−1𝝎 . (22)

These equations demonstrate the same results as those ob-

tained with quaternions (Equation 11 and 12).

Frequency-Domain data augmentation. Some studies

[26, 36] propose data augmentations in the frequency domain.

To establish the physical embedding of these data augmen-

tations, we may accordingly perform Fourier Transform on

physical states like orientation. However, frequency domain

operations can potentially violate the constraints of orien-

tation representation after the inverse Fourier Transform.

For example, a low-pass filter on orientation quaternions

can lead to non-unit quaternions and a loss of their phys-

ical meaning. Further study is needed to understand their

relationships with physics-informed data augmentation.

10 CONCLUSION
In this paper, we practically adopt HAR with realistic over-

head for mobile devices. The proposed UniHAR framework

effectively adopts physics-informed data augmentation on

massive unlabeled and limited labeled IMU data to overcome

the data heterogeneity across various users. UniHAR is pro-

totyped in the mobile platform and tested introducing low

overhead. Extensive evaluation with cross-dataset experi-

ments demonstrates its outstanding performance compared

with state-of-the-art approaches.
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