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ABSTRACT
Recent developments in Large LanguageModels (LLMs) have demon-
strated their remarkable capabilities across a range of tasks. Ques-
tions, however, persist about the nature of LLMs and their potential
to integrate common-sense human knowledge when performing
tasks involving information about the real physical world. This
paper delves into these questions by exploring how LLMs can be
extended to interact with and reason about the physical world
through IoT sensors and actuators, a concept that we term "Penetra-
tive AI ". The paper explores such an extension at two levels of LLMs’
ability to penetrate into the physical world via the processing of
sensory signals. Our preliminary findings indicate that LLMs, with
ChatGPT being the representative example in our exploration, have
considerable and unique proficiency in employing the embedded
world knowledge for interpreting IoT sensor data and reasoning
over them about tasks in the physical realm. Not only this opens
up new applications for LLMs beyond traditional text-based tasks,
but also enables new ways of incorporating human knowledge in
cyber-physical systems.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; • Com-
puter systems organization→ Embedded and cyber-physical
systems.
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1 INTRODUCTION
Large Language Models (LLMs) have made remarkable strides
[2, 26, 34]. A particularly revolutionary milestone is ChatGPT [22],
which excels in fluid, human-like conversations, marking a new era
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Figure 1: Overview of Penetrative AI.

in human-AI interactions. These latest LLMs cultivated on exten-
sive text datasets have showcased remarkable capabilities across
diverse tasks, including coding and logical problem-solving [5].
These out-of-the-box capabilities have demonstrated that they al-
ready comprise enormous amounts of world knowledge i.

This paper is motivated by an essential and intriguing question:
can we enable LLMs to complete tasks in the real physical world?
We delve into this inquiry and explore extending the boundaries of
LLMs’ capabilities by directly letting them interact with the physi-
cal world through Internet of Things (IoT) sensors. A basic example
of this process is depicted in Figure 1, where different from the
conventional way of LLMs, an LLM is expected to analyze sensor
data which are indeed projections from the physical world. We
conjecture that LLMs, having been trained on vast amounts of hu-
man knowledge, learned the physical world which can be directly
harnessed for analysis of such sensory information to derive deep
insights that traditionally require background knowledge from hu-
man experts and/or bespoke machine learning models trained with
large amounts of labeled sensor data. If this conjecture were not
true, we would observe from LLMs irrelevant responses, inaccurate
physical status, or inefficacious actions.

As illustrated in Figure 1, we formulate such a problem from a
signal processing’s point of view, and specifically explore the LLMs’
penetration into the physical world at two signal processing levels
with the sensor data: i) with the textualized signals derived from
underlying sensor data, and ii) with the digitized signals, essen-
tially numerical sequences of raw sensor readings. We term this

iSome studies referred to it as a world model [14] of how the world works.
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Figure 2: Overview of user activity sensing with LLMs.

endeavor "Penetrative AI" – where the embedded world knowl-
edge in LLMs serves as a foundation model, seamlessly integrated
with the Cyber-Physical Systems (CPS) for perceiving and inter-
vening in the physical world.

Our methodology is exemplified through two illustrative appli-
cations at two different levels, respectively - user activity sensing
where textualized signals from smartphone accelerometer, satellite,
and WiFi data are analyzed to discern user motion and environ-
ment conditions, and human heartbeat detection where digitized
electrocardiogram (ECG) data are utilized to derive the heartbeat
rate. Preliminary findings are encouraging, showcasing LLMs’ pro-
ficiency in interpreting IoT sensor data and performing perception
tasks in the physical world. Our exploration also underscores that
existing LLMs, such as ChatGPT-4, may already possess the capa-
bility to establish intricate connections among world knowledge
and can be guided to tackle CPS tasks.

2 PENETRATIVE LLMWITH TEXTUALIZED
SIGNALS

This section describes our effort in tasking ChatGPT, a chosen
vehicle, to comprehend sensor data at the textualized signal level.

2.1 An Illustrative Example
We take activity sensing as an illustrative example, where we task
ChatGPT with the interpretation of sensor data collected from
smartphones to derive user activities. The input sensor data encom-
pass smartphone accelerometer, satellite, and WiFi signals, and the
desired output is to discern the user motion and environment con-
text. Figure 2 presents the overview of this LLM-based design – the
sensor data are pre-processed by individual sensing components
and the textualized sensor states are supplied to the LLM with a
fixed prompt for activity inference.

Objective and rationale. We convey a clear task to ChatGPT –
"determine a user’s motion and surrounding conditions by analyz-
ing sensor data from their smartphones". The basic idea is that when
the user conducts different activities in different environments, the
collected sensor data would exhibit varied patterns, which reveal
the users’ activities.

Data preparation. To facilitate ChatGPT comprehension of the
sensor data, we undertake a preprocessing step where raw data
from different sensing modules are separately converted into textu-
alized states that are expected interpretable by ChatGPT. Figure 2
illustrates such a step.

To pre-process long accelerometer readings (6,000 samples from
10 seconds of triaxial accelerations sampled at 200 Hz), we employ
the Android step detector, which is an built-in step-counting imple-
mentation [7] and can transform the 6,000 raw data points into a
single textually expressed state, e.g., "step count: 5/min".

The Android system also offers a comprehensive set of Global
Navigation Satellite System (GNSS) satellite measurements [6], in-
cluding information like Pseudo-Random Noise as a satellite identi-
fier, Signal-to-Noise Ratio (SNR), and many others. To streamline
the data for ChatGPT interpretation, we filter and distill the satellite
data into two key attributes: the number of detected satellites and
their average SNR.

The Android system supports scanning for nearby APs and pro-
vides comprehensive information about scanned APs [8]. Similar
to satellite data, we disregard less relevant details and focus on
critical information – Service Set Identifier (SSID) and Received
Signal Strength Indicator (RSSI). To streamline the data and reduce
text length, we further filter APs with an RSSI lower than -70 and
instruct ChatGPT to analyze the SSIDs to capture useful location
information.

Expert knowledge. We guide LLMs by including explicit text-
based descriptions of the relationship between sensor patterns and
user activity states in the prompts, as illustrated in Figure 2. For
instance, a high satellite count and carrier-to-noise density indicate
an outdoor setting with strong satellite signals.

Reasoning examples. Following expert knowledge, we can
provide a set of reasoning examples to enhance the proficiency of
ChatGPT. Each example includes the data for processing, a step-by-
step reasoning process, and a brief summary of the ground truth
context. Figure 2 illustrates this with the reasoning example section.

Complete prompt. A full prompt includes a defined objective
and expert knowledge of the sensor data, all in natural language
as demonstrated in Figure 2. Essentially, the way we construct
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Figure 3: Response examples of ChatGPT-4 for activity sensingii.

the prompt serves as a means to educate and instruct ChatGPT
to interpret sensor data and formulate its answers into a concise
format. We thereafter present the prompt with succinct textualized
sensor data of novel queries to ChatGPT as shown in Figure 2, which
we expect to generate the inference results as a concise description
of the user’s activity. Note that the prompt, once completed, is
frozen and we simply supply new textualized sensor data for new
inferences without altering the prompt any further.

2.2 Preliminary Experiment Results
We conducted preliminary experiments in various scenarios – on
university campuses, commercial buildings, subway stations, out-
door spaces, and across cities. All sensor data were collected using a
Samsung Galaxy S8 Android smartphone. Accelerometer data was
sampled at 100 Hz, while the satellite and WiFi data were sampled
at 0.2 Hz. To perform our analysis, we utilized sensor data gathered
from time windows spanning durations of 10 to 45 seconds and
selected the most recent satellite and WiFi scanning results. The
evaluation was carried out using both ChatGPT- 3.5 and ChatGPT-4
[22], accessible through the OpenAI API [20] and default parameter
settings.

Figure 3 provides several example answers together with their
ground-truth contexts. Due to space limits, we have omitted the de-
tailed reasoning of ChatGPT responses except for the first example.
The results highlight ChatGPT-4’s capability to reason the user’s
surrounding context with its encapsulated knowledge as a founda-
tion, which cannot be achieved by traditional sensing models.

To quantitatively assess the efficacy of this approach, we tasked
ChatGPT to explicitly provide the states of motion (between "sta-
tionary" and "motion") and environment (between "indoors" and

iiDue to the space limit, check more examples and the complete prompt at https:
//dapowan.github.io/wands_penetrative-ai/
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Figure 4: Recognition accuracy of ChatGPT in activity sens-
ing. The ’e.k.’ denotes expert knowledge, and ’exam.’ refers
to the reasoning examples provided.

"outdoors"). We experiment with varied settings – with/without
expert knowledge in the prompt, as well as with different numbers
of reasoning examples.

Figure 4(a) summarizes the accuracy for motion detection, which
suggests two models perform reasonably well. ChatGPT-3.5 occa-
sionally outputs ’unknown’ states leading to 97% accuracy even
under the output constraints, which can be improved to 100% when
detailed expert knowledge and reasoning examples are provided.

Figure 4(b) summarizes the accuracy for environment classifica-
tion, which depends onmultimodal sensor data fusion and therefore
appears more challenging. Nevertheless, improved performance is
observed when expert knowledge and more reasoning examples
are used in the prompt. ChatGPT-4 achieves above 90% accuracy
with the best prompt template.

Overall, the above experiment results suggest LLMs are highly
effective in analyzing physical world signals when they are properly
abstracted into textual representations. These findings align with
our initial expectations with the knowledge basis of LLMs.

https://dapowan.github.io/wands_penetrative-ai/
https://dapowan.github.io/wands_penetrative-ai/
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Figure 5: Overview of heartbeat detection with LLM.

3 PENETRATIVE LLMWITH DIGITIZED
SIGNALS

This section describes our effort to go beyond the general expec-
tations of the textualized signal processing ability of LLMs. We
specifically study the potential of ChatGPT in comprehending digi-
tized sensor signals.

3.1 An Illustrative Example
We take human heartbeat detection as an illustrative example,
where we task ChatGPT with the input of ECG waveforms to de-
rive the heartbeat rate. An interesting and challenging job in this
application is that we incorporate digitized signals directly into the
prompts, delegating the signal processing task to ChatGPT. Figure
5 provides an overview of the design.

Objective and rationale. The objective for ChatGPT is to an-
alyze ECG signals and identify the "R-peaks" [32], which are tall
upward deflections and correspond to the red dots in Figure 5. The
objective part of the prompt succinctly states: "Find the R-peaks in
an ECG waveform".

Data preparation. The sensor data consist of a numerical se-
quence representing an ECG waveform. The original ECG data are
collected at a high sampling rate, e.g., 360Hz. In our design, raw
readings are down-sampled to 36 Hz and quantized to their integer
parts to reduce sequence length and number complexity.

Expert knowledge. We first provide interpretations regarding
R-peaks: "An R-peak within a sequence of ECG numbers refers to a
pronounced upward deflection, typically representing the largest
and most conspicuous values within the sequence". We then design
a natural language-based procedure that LLMs understand to guide
the selection of R-peaks. Three steps are included: i) assessing the
overall range of ECG numbers, ii) identifying subsequences charac-
terized by an initial lower value, a subsequent significant increase,
and a return to the overall range, and iii) selecting the highest value
from each such subsequence as the R-peak. We investigate whether
ChatGPT can effectively execute such fuzzy logic (without explicit
threshold values) when processing the digitized signals.

Reasoning examples. We also furnish ChatGPT with illus-
trative examples based on the provided procedure, encompassing
digitized ECG data, a reasoning process, and a summary of R-peak
numbers.
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Figure 6:MAE of ChatGPT in heartbeat detection. (a) The ’e.k.’
denotes expert knowledge, and ’exam.’ refers to the reasoning
examples provided.

3.2 Preliminary Experiment Results
We conducted preliminary experiments with the MIT-BIH Arrhyth-
mia Database [12], which is an ECG dataset equipped with ground
truth annotations for R-peaks. We downsampled the raw ECG sig-
nal to 36 Hz and each input ECG data are from a 5-second window
comprising 180 numbers. The evaluation was again carried out
using both ChatGPT-3.5 and ChatGPT-4 with default parameters.
For comparison, we also test the performance of Pan-Tompkins
[23], a classical signal processing approach with the same setting.

We use the Mean Absolute Error (MAE) to measure the deviation
in beats per minute between the predicted and actual R-peaks. In
Figure 6(a), we present the results of Pan-Tompkins and the two
models with different prompts. ChatGPT-4 consistently yields lower
errors than ChatGPT-3.5, achieving an MAE of 1.92 with the best
setting, i.e., when expert knowledge is provided with two reasoning
examples, which even outperforms the accuracy of Pan-Tompkins
approach iii. In Figure 6(b) we visualize the detailed Cumulative Dis-
tribution Function (CDF) of the MAE achieved by ChatGPT-3.5 and
ChatGPT-4.0 (when expert knowledge and one reasoning example
is provided). We also provide the MAE CDF of Pan-Tompkins as a
reference. While ChatGPT-3.5 often generates prolonged sequences
of R-peaks, resulting in substantial errors, ChatGPT-4 conversely
demonstrates enhanced stability and precision in identifying R-
peaks in the majority of cases and outperforms the Pan-Tompkins
approach.

In conclusion, our initial findings indicate that LLMs, particularly
ChatGPT-4, exhibit remarkable proficiency in analyzing physical
digitized signals when provided with proper guidance.

4 PENETRATIVE AI
While not achieving perfect accuracy, LLMs exhibit surprisingly
encouraging performance, even when dealing with pure digital
signals acquired from the physical world. This presents an enticing
opportunity to leverage LLMs’ world knowledge as a foundation
model to derive insights from sensory information while requiring
no or little additional task knowledge or data, i.e., in zero or few-
shot settings. Such a capability may be equipped with IoT sensors
and actuators to build intelligence into cyber-physical systems – a
concept we term "Penetrative AI ".
iiiNote however that Pan-Tompkins algorithm can achieve improved performance
when higher sampling rates and longer numerical sequences are supplied, e.g., using a
sequence of 30-second windowed data at 72 Hz in Pan-Tompkins algorithm may give
an MAE of 1.06 which is lower than that of ChatGPT-4.
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"Penetrative AI" is concerned with exploring the foundation role
of LLMs in completing tasks in the physical world. Two primary
characteristics define its scope – i) the involvement of the embedded
world knowledge in LLMs iv, and ii) the integration with IoT sensors
and/or actuators for perceiving and intervening the physical world.
It is important to distinguish the scope from existing practices
which shall not be considered as “Penetrative AI”, including:

• NLP applications of LLMs. Examples include language trans-
lation or text generation, where LLMs do not process sensor
data linked to the physical world.

• Conventional machine learning adopted in CPS or IoT. Exam-
ples include DNN models trained with labeled or unlabeled
sensor data which rely on summarizing patterns instead
of gaining power from world knowledge of LLMs, e.g., de-
veloping medical diagnosis systems with medical imaging
data.

• LLMs involved in the CPS loop but not applied to compre-
hending the physical world phenomena. A typical example is
LLM-enabled automation for inquiring weather data where
the LLM serves as a language interface for data queries but
not a foundation role in comprehending such sensor data.
Similarly in advanced driver assistance systems, LLMs may
be adopted as human-computer interfaces to manage and
convey ambient road conditions obtained from various on-
vehicle sensors or derived by other machine learning mod-
ules. As long as the LLMs are not engaged with their world
knowledge in direct analysis of sensor inputs or CPS control,
it is not considered a practice of penetrative AI.

"Penetrative AI" is different from "Embodied AI" [9]. Though
also emphasizes the interaction with the physical environment,
“Embodied AI” predominantly aims at designing robotic agents
and is broadly defined with general AI models (rather than the
penetrative AI’s focus on LLMs’ foundation roles). The penetrative
AI focuses on the exploration of integrating LLMs with IoT sensing.
It is not limited to the form of AI agents and supports AGI-in-the-
loop perception or control modules for CPS.

As the example applications demonstrate, penetrative AI may
offer the following potentials. It simplifies solution deployment,
allowing user-machine interaction in plain language and minimiz-
ing the need for extensive programming skills. It also enhances
data efficiency as LLMs embedded with vast world knowledge can
effectively generalize to new tasks. LLMs adeptly handle fuzzy logic
well, drawing inferences from vague or disorganized information,
and bypassing the need for precise logic. Finally, the penetrative
AI offers an innovative opportunity for multimodal fusion, where
diverse data types are transformed into a uniform text format, fa-
cilitating seamless adaptation to various tasks without extensive
model re-engineering.

5 CHALLENGES AND FUTURE DIRECTIONS
Adopting LLMs in a penetrative way for CPS is non-trivial since
LLMs are typically trained with extensive text corpora for NLP ap-
plications and thus may lack high expertise and domain knowledge

ivor variations like Vision-Language Models (VLMs) [21] which adapt to other input
modalities.

for CPS tasks. Unleashing its full potential necessitates addressing
the challenges contained in the following levels:

Understanding the knowledge boundaries of LLMs. A fun-
damental challenge lies in systematically assessing LLMs’ capa-
bilities for specific CPS contexts. A pragmatic approach to this is
engaging LLMs in structured dialogues, tailored to uncover their
understanding and application of relevant concepts at different lev-
els, including conceptual awareness where the LLMs’ fundamental
conceptual grasp can be gauged by questions like "what is SSID
in the context of WiFi?" or "how the RSSI varies with the distance
between a pair of WiFi AP and client?", and application and under-
standing which delves deeper, examining whether LLMs can aptly
apply fundamental concepts in practical scenarios with example
questions like "what does it imply about the users’ locations if their
smartphones connect to WiFi APs with certain SSIDs and RSSIs?".

Expanding LLMs’ capabilities. A subsequent and essential
challenge is to broaden the capabilities of LLMs for CPS tasks based
on the existing knowledge. Such expansion can be approached
through several strategies. Task decomposition can break down com-
plex tasks into simpler sub-tasks, which allows LLMs to develop
more focused and efficient problem-solvers. Signal transformation
and data preprocessing decides the form in which sensor or actuator
data shall be presented which is a crucial challenge. While digitized
signals offer in-depth information, they require a deeper level of
physical world understanding from LLMs. Transforming them into
textualized data may be beneficial and other preprocessing meth-
ods such as filtering to remove irrelevant or redundant information
may also enhance system efficacy. Effective prompt design is a major
challenge, which may involve embedding domain-specific knowl-
edge when LLMs’ common knowledge is limited in certain tasks.
Developing stateful prompts and effective algorithms with fuzzy
logic (as demonstrated in Section 3.2) is another interesting future
work. Interfacing with external tools also leads to an expansion of
LLMs’ capabilities. Examples include using code interpreters for
executing signal processing algorithms or leveraging procedure
calls for accessing real-time information and/or controlling CPS.

Enriching LLMs with expert knowledge. A pivotal approach
is to develop specialized models tailored to embedding additional
domain knowledge for CPS tasks. Such an approach however comes
with special considerations and challenges: Dataset construction for
multimodal datasets to train tailored LLMs is a challenge. Unlike
standard image-text pair datasets like those described in [3], sensor-
text datasets for CPS tasks shall include not only descriptive infor-
mation but also expert knowledge and processing guidance, which
necessitates a thoughtful approach to ensure the data are compre-
hensive, accurate, and reflective of real-world scenarios. Balancing
specialization with generalizability is necessary. A critical risk in
the fine-tuning LLMs is the potential disruption of the existing
knowledge base of LLMs and a balanced fine-tuning process with
both general and domain-specific data may be key to maintaining
the robustness of LLMs. Integrating expert models presents another
way to enrich expert knowledge of LLMs, e.g., integrating LLMs
with an IMU foundation model like LIMU-BERT [31] may enable
frontend features of human activities before LLM comprehension
for detailed behavior analysis. The distinct nature of sensor data
compared with textual data shall be considered which necessitates
the development of modality alignment techniques like [11].



HOTMOBILE ’24, February 28–29, 2024, San Diego, CA, USA Huatao Xu, Liying Han, Qirui Yang, Mo Li, Mani Srivastava

6 RELATEDWORK
The significant strides in natural language processing show that
large language models (LLMs) exhibit out-of-the-box capabilities
[2, 26, 34]. Beyond traditional NLP tasks, recent works have adopted
LLMs for a wide range of applications such as image editing [30],
video understanding [15], sequence completion [19], knowledge
graph construction [4, 28], and recommendation systems [10, 17].
These applications, however, predominantly operate within the
digital realm, with limited engagement in the physical world.

In domains like gaming and robotics, LLM-based agents have
been utilized to generate actions or plans, leveraging their inher-
ent general knowledge [16, 24, 25, 27, 29, 33]. Some efforts like
[16, 27] focus on the programming abilities of LLMs and inter-
face indirectly with the physical world through predefined APIs.
While these approaches are practical for everyday tasks requiring
general knowledge, such as rearranging objects on the table, their
applicability to CPS tasks that necessitate expert knowledge and
sophisticated signal understanding is limited.

Some initiatives echo the nascent endeavor of penetrative AI.
For example, Rt-2 [1] introduces a vision-language-action model
for robotic control but requires extra development to suit CPS tasks,
especially when sensor-text datasets are not available, a challenge
we discuss in Section 5. Liu et al. leverage LLMs to analyze medical
data for health-related tasks [18] but their model primarily learns
from question-answer pairs in prompts. In contrast to existing
efforts, LLMs in the penetrative AI directly engage in processing IoT
sensor signals at various levels with world knowledge. We believe
this is the first effort to explore the boundaries of LLMs’ ability
to interact with the physical world for cyber-physical systems.
LightLLM [13] is an ongoing practice which integrates LLMs for
traffic signal control tasks.

7 CONCLUSION
We present "Penetrative AI", a new concept concerning the explo-
ration of leveraging large language models’ common knowledge as
a foundation to accomplish real-world perceiving and intervening
tasks in cyber-physical systems. Our findings illuminate a promis-
ing path for the integration of LLMs and CPS, offering insights into
the future of AGI-in-the-loop solutions.
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