




Third, by moving the code rewriting logic to the base
station, SenSmart also significantly reduces the kernel size
on individual sensor nodes. By keeping the kernel small, we
allow more application code to reside in the program
memory.

Finally, SenSmart maintains an approximate linearity of
the instruction addresses between the original and the
naturalized program. After the rewriting, one instruction
can be translated into a variable number of instructions, and
this usually results in a code inflation nonlinear to the
instruction addresses. SenSmart regularizes the instruction
rewriting to mitigate the inflation. When modifying one
instruction, SenSmart replaces the instruction with one JMP
or CALL instruction, which takes the control flow into a
code snippet (called trampoline) corresponding to the
rewritten logic. All of the trampolines are appended after
the application program. Hence, the instruction count of the
modified program, excluding the trampoline code, is
exactly the same as that of the original, though the byte
sizes may still differ because the byte sizes of individual
instructions vary. Such an approximate linearity makes it
easier to map instruction addresses from the original
program to the modified one, particularly when the
addresses have to be resolved at run time (e.g., indirect
branches). Moreover, since many trampolines are similar,
they can be merged to save space (even if they belong to
different application programs), and further reduce the size
of the naturalized program.

Meanwhile, rewriting on the base station has its limit-
ations—it cannot utilize runtime information. For example,
the target address of an indirect branch or an indirect memory
access cannot be known by the rewriter on the base station.
These issues need to be resolved at runtime by the kernel.

4.2 Task Scheduling
With no privilege support on many sensor nodes, it is
unreliable to design preemptive scheduling based on clock
interrupts as traditional operating systems do, since the
interrupts could be disabled by application tasks. Instead,
SenSmart modifies the backward branch instructions when
rewriting the application code, to construct software traps
so that the branches will jump to the OS kernel before their
target addresses. The kernel routine maintains the time slice
for each task using the reserved Timer3 clock counter,1 and
a task will be preempted after its time slice is used up. Note
that the scheduling does not guarantee that the preemption
occurs exactly when the time slice ends, because the
software traps depend on the dynamic instruction flow
and the backward branches, which may not occur exactly at
the absolute end of a slice. However, the delay of the
preemption, usually no more than a few milliseconds, is
small enough to be ignored for most applications. It is also
noteworthy that, to make the scheduling fair for all tasks,
SenSmart will dynamically adjust the time slice to compen-
sate the preemption delay and avoid error accumulating.
Moreover, the 16-bit Timer3 is large enough for the
scheduling frequency, thus the counter overflow can also
be handled easily without an interrupt routine. Therefore,
even with interrupts disabled, SenSmart can still preempt
the tasks by the software traps and schedule them properly.

As a matter of fact, we have also noticed that such
interrupt-free preemption might be a mixed blessing. It
provides fairness for scheduling, while some sensory or
communication component, which intends to disable the
interrupts to ensure atomicity, may also be preempted by
the kernel unexpectedly. Although the drawback is mostly
not significant because its consequence, such as occasional
packet loss, can be handled properly by usual application
logic, SenSmart also provides APIs to denote a critical
section, which will not be preempted by the kernel. By such
means the issue is mitigated effectively in our practice.
Moreover, as a future work, we intend to migrate the
control logic of the peripheral resources, such as timer,
radio, and external FLASH storage, to the OS kernel
services, and letting application tasks access the virtualized
hardware using system calls. Such a mechanism could solve
the problem of broken atomicity since it prevents the
application code from manually controlling the physical
peripherals using atomic operations.

When SenSmart schedules a task to run, the kernel must
save the execution context of the current running task. The
execution context, about 50 bytes including CPU registers,
CPU flags, and some I/O registers relevant to program
status, is a sizable structure pressuring the scarce physical
memory on low-power sensor nodes as the number of tasks
grows. SenSmart employs run-length compression on task
contexts to save memory space. Since there are often
unused or copied registers, sequences of identical values
are not uncommon, giving opportunities for compression.

To avoid the possible risk of stack overflow in a small-
memory system, SenSmart uses a shared circular buffer,
instead of the task’s stack, to save contexts, as illustrated in
Fig. 2. Upon a context switch, the kernel compresses the
context of the switched-out task, saves it at the current end
position of the circular buffer, and then restores the context
of the task to be switched in.

The size of context of each application task varies after
compression, and imposes a challenge on the context
management algorithm. When there are fewer than two
application tasks or the scheduling is strictly round robin,
the context of the task to be switched in is always at the
beginning position of the circular buffer. This makes the
context management very efficient even when the sizes of
task contexts vary. However, we can also easily extend the
scheduling policy to a nonround-robin one. In such cases,
external fragment may appear and memory space may be
wasted, as illustrated in Fig. 2. A defrag routine is designed
in SenSmart, to detect and eliminate the fragment by
rearranging the context.

In our practice, the features of context compression and
fragment elimination are optional, as they introduce extra
overheads, and, more importantly, there is a risk of circular
buffer overflow, since the compression ratio cannot be

CHU ET AL.: SENSMART: ADAPTIVE STACK MANAGEMENT FOR MULTITASKING SENSOR NETWORKS 141

Fig. 2. Circular buffer for context saving and restoring.

1. Timer3 is not used for preemption, as SenSmart chooses not to rely on
clock interrupts for scheduling.





5.1 Overhead
We have implemented SenSmart on MICA2/MICAz motes,
and made the source code available [34]. With only very
basic hardware assumptions, SenSmart should be able to be
ported to target platforms with ATmega128L MCUs with-
out much difficulty. The SenSmart kernel is configurable. In
the default setting, it occupies less than 6 percent of the
program memory and about 10 percent of the data memory.
This memory footprint is much smaller than our previous
work, the t-kernel, which uses more data memory to
perform on-node rewriting.

The task scheduling and memory management in
SenSmart ensure the system integrity under multitasking,
but they also inevitably introduce overhead into the
system. Using the ATmega simulator in AVR Studio, we
measure the overhead in CPU cycles, and the correspond-
ing execution time on the 7.32 MHz ATmega128L MCU is
also calculated. The results are listed in Table 2.

If not fully optimized, the overhead of memory address
translation and checking would dramatically affect system
performance since the memory accesses occur frequently in
programs. Fortunately, this overhead can often be amortized
within basic blocks as discussed in Section 4.3.2. Indirect
branches have high overhead due to branch destination
lookup at runtime, but such instructions are rare in current
sensornet applications. The overheads of stack relocation
and context switching vary in different cases. The numbers
shown in Table 2 give representative examples. It is worth
noting that relocating a stack on an ATmega128L MCU may
introduce 100� 400� s delay. SenSmart is conservative on
memory relocations; hence, such delays should be infre-
quent in stable systems. Moreover, since many common

operations, such as sensor I/O and packet transmissions,
take multiple milliseconds on a sensor node, we feel
confident that occasional submillisecond delay paid for an
unprecedentedly adaptive multitasking support is a small
and welcomed cost.

5.2 Kernel Benchmark Programs
To assess SenSmart with typical sensornet applications, we
test the seven kernel benchmark programs used in the
t-kernel for our evaluation [21]. As listed in Table 3, these
programs cover typical operations in sensornet applica-
tions. Fig. 6 analyzes the code inflation of the kernel
benchmark programs under SenSmart and the t-kernel, as
compared with the native code size. The code inflation
under SenSmart is within 200 percent. As a comparison, the
t-kernel, which also uses the binary translation, makes the
code size much larger. The reason is that SenSmart conducts
translation on base station, and can make translated code
much more optimized in terms of space efficiency.

After measuring the code size of the programs, we
compare the execution performance of SenSmart with other
software-based solutions. It is not a design goal of us to
optimize for execution speed. Instead, SenSmart aims at
providing stack adaptivity, memory protection, and flexible
multitasking capability. But SenSmart still has a reasonable
execution speed, and only shows a moderate slowdown as
compared to the t-kernel, which is optimized for execution
speed. Although the t-kernel has better performance in
most of the seven programs as Fig. 7 shows, we believe that
the extra cost is fair and reasonable because SenSmart
supports concurrent tasks with independent time slice and
memory regions, while the task and memory protection in
the t-kernel are both simpler as shown in Table 1.

144 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 1, JANUARY 2013

TABLE 2
Overhead of Key Operations

Fig. 6. Code inflation of kernel benchmark programs.

TABLE 3
Kernel Benchmark Programs

Fig. 7. Execution time of kernel benchmark programs.



Although the performance disadvantage of SenSmart
emerges in the seven kernel benchmark programs, which
perform intensive computation during the whole working
process, in realistic energy constrained sensor nodes, most
applications have a periodic events triggering pattern [35],
[36]. For those applications, the extra CPU cycles spent in
SenSmart only modestly reduce the CPU idle time, and do
not affect the overall application performance.

We use aPeriodicTaskprogram to emulate such common
operating pattern of sensornet applications. Using the
program, we examine SenSmart’s performance in more
realistic settings, and stress-test it to see when it fails to
handle the workload. The computational tasks in Period-
icTask can be configured to a desirable computation size
(number of instructions) to emulate applications of different
complexity. When we configure less computational instruc-
tions for each task, it works more like an ordinary event-
driven program. When more instructions are added into the
tasks, it becomes more and more computation intensive
until the workload is completely CPU bound.

We test the PeriodicTaskprogram in SenSmart with
different computation sizes. For each test, we record the
execution time on real sensor nodes. Moreover, we use the
avrora[37] simulator to measure the proportion of the active
CPU cycles, which can be taken as the average CPU
utilization during the execution. As a comparison, the cases
for the native-code execution without any system kernel
overhead, and results in the work of t-kernel, are also listed.
As shown in Fig. 8a, when the computation size is less than
60,000 instructions, the execution time in SenSmart is very
close to the native case. After the threshold of 60,000
instructions, the execution time increases dramatically.
Fig. 8b shows the CPU utilization data. Larger computation
size inevitably increases the CPU utilization, and it
increases more rapidly in SenSmart due to the overhead
of task switching and logical addressing operations. When
it reaches 60,000 instructions, the CPU utilization in
SenSmart is nearly saturated. Beyond that saturation point,
the task execution takes longer time, because when the CPU
is busy, some timer tasks cannot be handled in time. Hence,

SenSmart is suitable for the applications with a CPU
utilization lower than 30 percent, which is the common
case in current sensornet applications. For the computation-
intensive applications, there is a tradeoff between stack
adaptivity, multitasking capability, and power consump-
tion. SenSmart may not be a suitable solution for those
applications.

It is noteworthy from Fig. 8a that, for the tasks with less
than 60,000 instructions, SenSmart performs better than
t-kernel even though the latter has lighter memory protec-
tion operations. The reason is that the t-kernel has a warm-
up rewriting overhead, which introduces a considerable
initialization delay. Even without that, the t-kernel performs
almost the same than SenSmart for applications that are not
computation intensive. Fortunately, many current sensornet
applications have light CPU utilizations. The detailed
results will be shown in Section 5.3.

We have also compared the t-kernel and SenSmart with
the software-based virtual machine, Maté , using an equiva-
lent PeriodicTaskprogram. The result is shown in Fig. 8c, in
which the Y-axis is exponential. The execution time of
PeriodicTaskprogram in Maté is much higher than in t-kernel
and SenSmart. As a fully virtualized environment, the
virtual machine can also enhance reliability and ensure
memory protection [38]. But the interpretation-based execu-
tion has a significant performance penalty, as indicated by
the difference in execution speed. Overall, SenSmart is an
efficient design among software-based solutions for general
application programming.

5.3 TinyOS Applications
Different from the kernel benchmark programs, which
simply emulate the common operations, and execute with
a run-to-complete style, most sensornet applications devel-
oped for TinyOS are event-driven—they contain routines to
be invoked periodically, and execute without an explicit exit.
We use six sample applications provided in TinyOS 2.1 to
assess their overheads running in SenSmart. The results are
shown in Figs. 9 and 10. Note that instead of the execution
time, the CPU utilization simulated in avrora over an
execution periods of 3 minutes depicts the active execution
cycles for such applications in Fig. 10. Obviously, the code
size of real applications, which indicates the program
complexity to a certain extent, is much larger than the kernel
benchmark programs. However, the code inflation ratio
remains roughly unchanged, and the inflated size still can be
accommodated by MICAz nodes with 128 KB program
memory. The CPU utilizations of those applications are also
low enough, which indicates that SenSmart fits for such
applications with acceptable overhead.

CHU ET AL.: SENSMART: ADAPTIVE STACK MANAGEMENT FOR MULTITASKING SENSOR NETWORKS 145

Fig. 8. Execution time and CPU utilization of PeriodicTask program.

Fig. 9. Code inflation of TinyOS applications.


